scholarly journals Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types

2011 ◽  
Vol 11 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Z. A. Kanji ◽  
P. J. DeMott ◽  
O. Möhler ◽  
J. P. D. Abbatt

Abstract. The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4-th ice nucleation workshop, on 14–28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences, especially at low temperatures, perhaps due to the variation in how onset of ice formation is defined between the instruments and the different inherent residence times. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T<45 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.

2010 ◽  
Vol 10 (9) ◽  
pp. 20857-20886 ◽  
Author(s):  
Z. A. Kanji ◽  
P. J. DeMott ◽  
O. Möhler ◽  
J. P. D. Abbatt

Abstract. The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4th ice nucleation workshop, on 14–28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences attributed to the variation in how onset of ice formation is defined between the instruments. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T < 245 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.


1966 ◽  
Vol 44 (10) ◽  
pp. 2431-2445 ◽  
Author(s):  
J. Maybank ◽  
N. Barthakur

The problem of whether ice nucleation takes place more readily from the vapor directly to the solid, or via an intermediate liquid phase has been studied for several of the more efficient amino-acid nucleators. It has been shown that the threshold temperatures observed in cloud chamber tests are in fact those of the material acting as freezing nuclei (i.e. via the liquid phase), and any discrepancies between such tests and trials with bulk water may be accounted for satisfactorily by partial destruction of the nucleus surface by the water. Investigations on ice formation about airborne particles and on macroscopic amino-acid crystals have shown that for certain of these substances a transition in behavior takes place around −20 °C. Below this temperature, ice formation no longer requires saturation conditions with respect to supercooled water and so the particles may be considered to act by converting the vapor directly to ice, and can, therefore, be designated sublimation nuclei.The major obstacle in the way of airborne particles acting as freezing nuclei has been the requirement that they act first as condensation centers. Under the conditions prevailing in supercooled clouds with vapor pressures equal to, or barely exceeding that of water saturation, condensation is unlikely on the somewhat hydrophobic surfaces of amino-acid particles. It has been shown, however, by using a radioactive tracer in small water droplets that droplet–particle collisions can occur. While not efficient, this process would permit a few particles in a cloud chamber experiment to act as freezing nuclei, thereby establishing the potential activity of the material itself.


2011 ◽  
Vol 11 (1) ◽  
pp. 53-65 ◽  
Author(s):  
H. M. Jones ◽  
M. J. Flynn ◽  
P. J. DeMott ◽  
O. Möhler

Abstract. An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). MINC and CSU-CFDC detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of supersaturation with respect to water (SSw) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.


2016 ◽  
Author(s):  
Baban Nagare ◽  
Claudia Marcolli ◽  
André Welti ◽  
Olaf Stetzer ◽  
Ulrike Lohmann

Abstract. Ice nucleating particles (INPs) in the atmosphere are responsible for glaciating cloud droplets between 237 K and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data was obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH) using 80 μm diameter droplets which can interact with INPs for residence times of 2 s and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter ATD and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm−3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm−3 for AgI. For concentrations < 5000 cm−3, the droplets collect only one particle on average during their time in the chamber. For ATD and kaolinite particles, contact freezing efficiencies at 2 s residence time were smaller than at 4 s, which is in disagreement with a collisional contact freezing process but in accordance with contact freezing insideout or immersion freezing. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber IMCA/ZINC for 3 s residence time. In IMCA/ZINC, each INP is activated into a droplet in IMCA and provides its surface for ice nucleation in the ZINC chamber. The comparison of contact and immersion freezing results did not confirm a general enhancement of freezing efficiency for contact compared with immersion freezing experiments. For AgI particles the onset of heterogeneous freezing in CLINCH was even shifted to lower temperatures compared with IMCA/ZINC. For ATD, freezing efficiencies for contact and immersion freezing experiments were similar. For kaolinite particles, contact freezing became detectable at higher temperatures than immersion freezing. Using contact angle information between water and the INP, it is discussed how the position of the INP in or on the droplets may influence its ice nucleation activity.


2020 ◽  
Author(s):  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Bernd Kärcher

Abstract. How ice crystals form in the troposphere strongly affects cirrus cloud properties. Atmospheric ice formation is often initiated by aerosol particles that act as ice nucleating particles. The aerosol-cloud interactions of soot and associated feedbacks remain uncertain, in part because a coherent understanding of the ice nucleation mechanism and activity of soot has not yet emerged. Here, we provide a new framework that predicts ice formation on soot particles via pore condensation and freezing (PCF) that, unlike previous approaches, considers soot particle properties capturing their vastly different pore properties compared to other aerosol species such as mineral dust. During PCF, water is taken up below water saturation into pores on soot aggregates by capillary condensation. At cirrus temperatures, pore water can freeze homogeneously and subsequently grow into a macroscopic ice crystal. In the soot-PCF framework presented here, the relative humidity conditions required for these steps are derived for different pore types as a function of temperature. The pore types considered here evolve from idealized stacking of equally sized primary particles, either in tetrahedral or cubic packing arrangements. Specifically, we encompass n-membered ring pores that form between n individual spheres within the same layer of primary particles as well as pores in the form of inner cavities that form between two layers of primary particles. We treat soot primary particles as perfect spheres and use the contact angle between soot and water (θsw), the primary particle diameter (Dpp) and the degree of primary particle overlap (overlap coefficient, Cov) to characterize soot pore properties. We find that n-membered ring pores are the dominant pore structures for soot-PCF, as they are common features of soot aggregates and have a suitable geometry for both, filling with water and growing ice below water saturation. We focus our analysis on three-membered and four-membered ring pores as they are of the right size for PCF assuming primary particle sizes typical for atmospheric soot particles. For these pore types, we derive equations that describe the conditions for all three steps of soot-PCF, namely capillary condensation, ice nucleation, and ice growth. Since at typical cirrus conditions homogeneous ice nucleation can be considered immediate as soon as the water volume within the pore is large enough to host a critical ice embryo, soot-PCF becomes either limited by capillary condensation or ice crystal growth. For instance, our results show that at typical cirrus temperatures of T = 220 K, three-membered ring pores formed between primary particles with θsw = 60°, Dpp = 20 nm, and Cov = 0.05 are ice growth limited, as the ice requires a relative humidity with respect to ice of RHi = 137 % to grow out of the pore, while a sufficient volume of pore water for ice nucleation has condensed already at RHi = 86 %. Conversely, four-membered ring pores with the same primary particle size and an overlap coefficient of Cov = 0.1 are capillary condensation limited as they require RHi = 129 % to gather enough water for ice nucleation, compared with only 124 % RHi, required for ice growth. We use the soot-PCF framework to derive a new equation to parameterize of ice formation on soot particles via PCF. This equation is based on soot properties that are routinely measured, including the primary particle size and overlap, and the fractal dimension. These properties, along with the number of primary particles making up an aggregate and the contact angle between water and soot, constrain the parameterization. Applying the new parameterization to previously reported laboratory data of ice formation on soot particles provides direct evidence that ice nucleation on soot aggregates takes place via PCF. We conclude that this new framework clarifies the ice formation mechanism on soot particles at cirrus conditions and provides a new perspective to represent ice formation on soot in climate models.


2019 ◽  
Vol 116 (17) ◽  
pp. 8184-8189 ◽  
Author(s):  
Robert O. David ◽  
Claudia Marcolli ◽  
Jonas Fahrni ◽  
Yuqing Qiu ◽  
Yamila A. Perez Sirkin ◽  
...  

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.


Tellus B ◽  
2018 ◽  
Vol 70 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Xiangrui Kong ◽  
Martin J. Wolf ◽  
Michael Roesch ◽  
Erik S. Thomson ◽  
Thorsten Bartels-Rausch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document