Elastic constants and anisotropic pair correlations in solid hydrogen and deuterium

1979 ◽  
Vol 57 (2) ◽  
pp. 136-146 ◽  
Author(s):  
S. Luryi ◽  
J. Van Kranendonk

The anisotropic displacement–displacement correlation function for the two types of pairs of nearest neighbours in solid hep hydrogen and deuterium is studied. Two mechanisms contributing to the deviation of the pair distribution function from axial symmetry around the pair axis are identified. The one is due to the anisotropy of the phonon dispersion relations and is treated in a generalized Debye model parameterized in terms of the elastic constants. The elasticity tensor is decomposed into rotationally irreducible parts, and certain new relations between the elastic constants of hep crystals with central forces are derived. The other mechanism arises from the immediate, anisotropic environment of a pair and is treated using a generalized Einstein model. The relevance of these results for the interpretation of the microwave spectrum of pairs of orthohydrogen molecules in parahydrogen is also discussed.

2019 ◽  
Vol 33 (08) ◽  
pp. 1950093 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
M. Rizwan ◽  
M. Aftab Fareed ◽  
H. Bushra Munir ◽  
...  

In this study, thermo-elastic and lattice dynamic properties of XMgAl (X = Li, Na) half-Heusler compounds are investigated using density functional theory implemented in WIEN2k and Quantum ESPRESSO codes. Generalized gradient approximation (GGA) as an exchange correlation function has been used in Kohn–Sham equations. Firstly, the structure of these Heusler compounds is optimized and then these optimized parameters are used to find three elastic constants [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text] type structures. Three elastic constants are then used to determine different elastic moduli like bulk modulus, shear modulus, Young’s modulus and other mechanical parameters like Pugh’s ratio, Poisson’s ratio, anisotropic ratio, sound velocities, Debye temperature and melting temperature. On behalf of these mechanical parameters, the brittle/ductile nature and isotropic/anisotropic behavior of the materials has been studied. Different regions of vibrational modes in the materials are also discussed on behalf of Debye temperature calculations. The vibrational properties of the half-Heusler compounds are computed using Martins–Troullier pseudo potentials implemented in Quantum ESPRESSO. The phonon dispersion curves and phonon density of states in first Brillion zone are obtained and discussed. Reststrahlen band of LiMgAl is found greater than NaMgAl.


1981 ◽  
Vol 104 (1) ◽  
pp. 97-102 ◽  
Author(s):  
J. Sosnowski ◽  
S. Bednarski ◽  
W. Bührer ◽  
A. Czachor ◽  
E. Maliszewski

Author(s):  
M. Born

The theory of lattice deformations is presented in a new form, using the tensor calculus. The case of central forces is worked out in detail, and the results are applied to some simple hexagonal lattices. It is shown that the Bravais hexagonal lattice is unstable but the close-packed hexagonal lattice stable. The elastic constants of this lattice are calculated.


1990 ◽  
Vol 203 ◽  
Author(s):  
Richard J. Farris ◽  
M. A. Maden ◽  
K. Tong

ABSTRACTThe state of stress for a uniform coating away from the edges reduces to that of plane stress, two in-plane normal stresses, and an in-plane shear stress. For this state, the interface between the coating and the substrate is totally stress free. Since the substrate and the coating are not interacting mechanically, an internal section of the substrate can be removed creating a tensioned drum-like membrane without altering the stress state. Holographic interferometry of vibrationally excited membranes is used to evaluate the stress. Using this technique, up to thirty vibrational modes can be obtained. This high degree of redundancy enables one to determine the one shear and two normal stresses that act in the plane of the coating. The only physical property requires is the coating density. The density is obtained from commonly reported literature values. Simple variations on the membrane vibration scheme, e.g., cutting the membrane to create a uniaxially tensioned ribbon, enables one to determine the in-plane Poisson's ratio and shearmodulus.In separate but related experiments on commercially made free-standing films with residual orientation, the above techniques, combined with special free and axially constrainedcompressibility experiments should enable all of the Poisson's ratios and elasticmoduli for an orthotropic material (nine elastic constants) to be determined. Methods for measuring the state of stress and the elastic constants are required to predict the state of stress in complex coating geometries.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740025 ◽  
Author(s):  
J. Speth ◽  
N. Lyutorovich

Many-body Green functions are a very efficient formulation of the many-body problem. We review the application of this method to nuclear physics problems. The formulas which can be derived are of general applicability, e.g., in self-consistent as well as in nonself-consistent calculations. With the help of the Landau renormalization, one obtains relations without any approximations. This allows to apply conservation laws which lead to important general relations. We investigate the one-body and two-body Green functions as well as the three-body Green function and discuss their connection to nuclear observables. The generalization to systems with pair correlations are also presented. Numerical examples are compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document