Angular pair correlations of observed and simulated galaxy distributions

1990 ◽  
Vol 68 (9) ◽  
pp. 827-830
Author(s):  
G. Wiedenmann ◽  
H. Atmanspacher ◽  
H. Scheingraber

The main body of quantitative information about galaxy statistics is obtained from correlation studies. It has recently turned out that a modified correlation formalism can provide details about large-scale structure in the galaxy distribution, which are obscured by artefacts of the conventional correlation function. The modified pair correlation function, as applied to the Zwicky catalogue of galaxies, shows two distinct power-law regimes at small scales (< 1°) and large scales (around 10°). Based on the comparison of simulated bubblelike large-scale structures with the Zwicky sample, these regimes are interpreted to correspond to the distribution of galaxies within the shells of the bubbles (small scale), and the distribution of the bubbles themselves (large scale).

2020 ◽  
Vol 635 ◽  
pp. A195 ◽  
Author(s):  
C. Gouin ◽  
N. Aghanim ◽  
V. Bonjean ◽  
M. Douspis

Galaxy clusters are connected at their peripheries to the large-scale structures by cosmic filaments that funnel accreting material. These filamentary structures are studied to investigate both environment-driven galaxy evolution and structure formation and evolution. In the present work, we probe in a statistical manner the azimuthal distribution of galaxies around clusters as a function of the cluster-centric distance, cluster richness, and star-forming or passive galaxy activity. We performed a harmonic decomposition in large photometric galaxy catalogue around 6400 SDSS clusters with masses M >  1014 solar masses in the redshift range of 0.1 <  z <  0.3. The same analysis was performed on the mock galaxy catalogue from the light cone of a Magneticum hydrodynamical simulation. We used the multipole analysis to quantify asymmetries in the 2D galaxy distribution. In the inner cluster regions at R <  2R500, we confirm that the galaxy distribution traces an ellipsoidal shape, which is more pronounced for richest clusters. In the outskirts of the clusters (R = [2 − 8]R500), filamentary patterns are detected in harmonic space with a mean angular scale mmean = 4.2 ± 0.1. Massive clusters seem to have a larger number of connected filaments than lower-mass clusters. We also find that passive galaxies appear to trace the filamentary structures around clusters better. This is the case even if the contribution of star-forming galaxies tends to increase with the cluster-centric distance, suggesting a gradient of galaxy activity in filaments around clusters.


1993 ◽  
Vol 262 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Toru Yamada ◽  
Tadafumi Takata ◽  
Thomas Djamaluddin ◽  
Akihiko Tomita ◽  
Kentaro Aoki ◽  
...  

2009 ◽  
Vol 5 (S267) ◽  
pp. 273-282
Author(s):  
Andrew King

AbstractI review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.


Author(s):  
Angela Nastevska ◽  
Jovana Jovanova ◽  
Mary Frecker

Abstract Large scale structures can benefit from the design of compliant joints that can provide flexibility and adaptability. A high level of deformation is achieved locally with the design of flexures in compliant mechanisms. Additionally, by introducing contact-aided compliant mechanisms, nonlinear bending stiffness is achieved to make the joints flexible in one direction and stiff in the opposite one. All these concepts have been explored in small scale engineering design, but they have not been applied to large scale structures. In this paper the design of a large scale compliant mechanism is proposed for novel design of a foldable shipping container. The superelasticity of nickel titanium is shown to be beneficial in designing the joints of the compliant mechanism.


2020 ◽  
Vol 497 (4) ◽  
pp. 4077-4090 ◽  
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey

ABSTRACT A non-zero mutual information between morphology of a galaxy and its large-scale environment is known to exist in Sloan Digital Sky Survey (SDSS) upto a few tens of Mpc. It is important to test the statistical significance of these mutual information if any. We propose three different methods to test the statistical significance of these non-zero mutual information and apply them to SDSS and Millennium run simulation. We randomize the morphological information of SDSS galaxies without affecting their spatial distribution and compare the mutual information in the original and randomized data sets. We also divide the galaxy distribution into smaller subcubes and randomly shuffle them many times keeping the morphological information of galaxies intact. We compare the mutual information in the original SDSS data and its shuffled realizations for different shuffling lengths. Using a t-test, we find that a small but statistically significant (at $99.9{{\ \rm per\ cent}}$ confidence level) mutual information between morphology and environment exists upto the entire length-scale probed. We also conduct another experiment using mock data sets from a semi-analytic galaxy catalogue where we assign morphology to galaxies in a controlled manner based on the density at their locations. The experiment clearly demonstrates that mutual information can effectively capture the physical correlations between morphology and environment. Our analysis suggests that physical association between morphology and environment may extend to much larger length-scales than currently believed, and the information theoretic framework presented here can serve as a sensitive and useful probe of the assembly bias and large-scale environmental dependence of galaxy properties.


1964 ◽  
Vol 19 (13) ◽  
pp. 1447-1451 ◽  
Author(s):  
G. Ecker ◽  
W. Kröll

We consider a plasma consisting of particle components with different temperatures. The components are uniformly distributed in the configuration space and MAXWELLIAN in the velocity space. Pair correlations are assumed to be small and higher order correlations negligible. It is shown from the BBGKY-hierarchy that the influence of the electrons on the ion kinetics can be taken into account by treating the ions as dressed particles. The hierarchy for these dressed particles provides the ion-ion correlation function. The electron-ion pair correlation is calculated from the POISSON equation using the ion-ion correlation and relating the electron-ion pair distribution to the average potential. By the same procedure we derive the electron-electron correlation making use of the electron-ion correlation. The results are compared with those of other authors.


1999 ◽  
Vol 183 ◽  
pp. 256-256
Author(s):  
U. Lindner ◽  
K.J. Fricke ◽  
J. Einasto ◽  
M. Einasto

We present an investigation of the galaxy distribution in the huge underdense region between the Hercules, Coma and Local Superclusters, the so-called Northern Local Void (NLV), using void statistics (for details refer to Lindner et al. this Volume). Reshift data for galaxies and poor clusters of galaxies are available in low and high density regions as well. Samples of galaxies with different morphological type and various luminosity limits have been studied separately and void catalogues have been compiled from three different luminosity limited galaxy samples for the first time. Voids have been found using the empty sphere method which has the potential to detect and describe subtle structures in the galaxy distribution. Our approach is complementary to most other methods usually used in Large–Scale Structure studies.


1988 ◽  
Vol 130 ◽  
pp. 510-511
Author(s):  
Manolis Plionis

The Shane & Wirtanen (SW) galaxy catalog, as reduced by Seldner et al (SSGP), is used to calculate the dipole vector of the galaxy distribution. The catalogue covers 86% of the North and 53% of the South Galactic cap (totally 8.8 steradians) and contains about 810,000 galaxies binned in 10′ × 10′ cells with magnitude limit mB ∼ 18.8. Dipoles have been found in the IRAS and in an optical catalogue based on the ESO, UGC and MCG catalogues, with average depths of ∼ 100 h−1 and ∼ 50 h−1 Mpc respectively. The direction of these dipoles is consistent with that of the microwave background dipole which means that the structures responsible for the dipole are present within the limits of the shallower catalogue and dominate the large-scale morpology of the galaxy distribution in both catalogues. It can therefore be expected that these structures will be ‘washed out’ by more distant structures dominating the deeper SW catalogue. The characteristic depth of the SW catalogue is 360 h−1 and the median depth of a cluster sample, identified from the SW catalogue by an objective proccedure, is ∼ 180 h−1 Mpc. Even if a dipole is found there is no apparent reason for it to point towards the MWB dipole direction since other galaxy fluctuations, comparable in size with those responsible for the MWB dipole, should be present in the SW catalogue if the Cosmological Principle is relevant on scales traced by the catalogue.


1987 ◽  
Vol 9 ◽  
pp. 247-248
Author(s):  
Yu. F. Knizhnikov ◽  
V.I. Kravtsova ◽  
I.A. Labutina

Remote-sensing methods in monitoring the glacierization of Mount EI‛ brus are used to produce base and dynamic maps, and to obtain quantitative information (dynamic indices) about the rate, intensity, and variations of the process. The monitoring system is divided, according to scope and territory covered, into small-scale for total glacierization and the periglacial zone, medium-scale for separate glaciers, and large-scale (detailed) for part of the glaciers or sectors of the adjoining slopes. The approximate relationship of even scales is 1 : 4. Small-scale monitoring remote-sensing systems are important for making maps showing the complex characteristics of the glaciological system. A series of maps was produced including geographical, those of high-altitude zones, slope and exposure angles, geological, glaciomorphological, climatic (temperature, precipitation, and winds), distribution of direct solar radiation, hydrological (source of streams), seats of avalanches, and landslides. All these data serve as a cartographical basis in monitoring the glacierization of Mount EI‛ brus. They are compiled from remotely sensed and Earth-based data. Current monitoring on a small scale includes observations of the conditions which determine the existence of the glacial system - this includes data on winter snowfall and the period of snow cover. These observations were obtained from meteorological and resource satellites, and from scanner data of medium and high resolution. Also important are observations of changes in the outline of glaciers, times of snowfall and character of the distribution of snow, and its redistribution due to avalanches and snowstorms. High-resolution space photographs, small-scale aerial photographs, and aerovisual observations provide the data for these observations. It has been determined that the area of the glaciers of Mount El‛ brus has been reduced by 1 % in the last 25 years, i.e. the rate of its deglacierization dropped sharply as compared to preceding decades. The role of quantitative information gains importance in the medium-scale level of monitoring. Topographical maps of separate glaciers compiled from aerial photographs or data from ground stereo-photogrammetric surveys constitute the base maps at this level. The main method used in monitoring were large-scale surveys from aircraft, perspective surveys from helicopters, and phototheodolite surveys. Multi-date surveys of the glaciers provide data about the changes in their outlines and height, the character of their relief, their moraines, the amount of snow accumulation and ablation in separate years, the surface rates of ice flow and their fluctuations. The techniques by which quantitative information is obtained about changes in the glaciers are derived from processing the data of multi-date surveys. The organization and techniques of phototheodolite surveys have been improved. A theory evolved for determining the surface-ice movement by stereo-photogrammetric means and the technique for it has also improved; algorithms and programs for machine processing of the data of multi-date surveys (ground and from aircraft) have been produced At this level of monitoring, it has been found that the retreat rate of most glaciers has slowed down and several glaciers are now in equilibrium. Several glaciers became active at the beginning of the 1970s and 1980s; this was accompanied by an increase in their height and forward movement. For example, activation of Kyukyurtlyu Glacier has been recorded (higher surface and increasing flow rate) which has caused the glacier to move forward 100 m. Surveys at an interval of 2 years recorded the beginning of the process of retreat of this glacier. Detailed monitoring is used to detect the mechanism of the dynamic processes and to study it on local representative sectors. On a glacier it may take the form of annual surveys of its tongue, which makes it possible to observe the processes of formation of moraines and glacio-fluvial relief. Studies may also be made of the mechanism of the movement of avalanches and landslides, deducing their quantitative characteristics and appraising the results of avalanches and landslides. Multi-date surveys of sectors of the slopes provide information about processes in the periglacial zone. At this level, regularly repeated ground stereo-photogrammetric surveys are the main means of observation. Glaciological remote-sensing monitoring provides a wealth of data for theoretical development in the field of glaciology. It makes it possible to forecast and produce warnings about hazardous processes and phenomena.


Sign in / Sign up

Export Citation Format

Share Document