Swelling pressures of compacted bentonites from diffuse double layer theory

2004 ◽  
Vol 41 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Snehasis Tripathy ◽  
Asuri Sridharan ◽  
Tom Schanz

The swelling pressures of several compacted bentonites (MX80, Febex, and Montigel) proposed for use as barrier materials in storing high-level radioactive waste in many countries were determined from the Gouy–Chapman diffuse double layer theory. The swelling pressures thus determined were compared with the reported experimental swelling pressures. The study revealed that, in general, at low compaction dry densities of the bentonites, the experimental swelling pressures are less than their theoretical counterparts, with the reverse trend at high compaction dry densities. Based on the reported experimental results for the three bentonites, relationships between the nondimensional midplane potential function, u, and the nondimensional distance function, Kd, were established. New equations for the swelling pressure were proposed on the basis of the diffuse double layer theory and the reported experimental data to compute swelling pressures of compacted bentonites. The suitability of the new equations was also verified with additionally reported experimental swelling pressures from three other bentonites (Kunigel V1, Kunigel, and bentonite S-2) that have been also proposed for use as barrier materials. Very good agreement was found in all the cases between the experimental swelling pressures and the swelling pressures obtained using the proposed equations. The use of the proposed equations is based on the weighted average valency of the cations present in bentonites, since the valency of the cations present has a significant influence on the swelling pressure.Key words: clays, compressibility, swelling pressure, expansive soils, chemical properties, radioactive waste disposal.

2007 ◽  
Vol 44 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Snehasis Tripathy ◽  
Tom Schanz

In this study, a method is proposed on the basis of the diffuse double layer theory to determine the compressibility of clays for one-dimensional conditions for vertical pressures far greater than the testing range of conventional oeodometer tests. Experimental e–p curves of several reported bentonitic clays were considered to verify the proposed method. It is shown that the parameters required to use the diffuse double layer theory can be obtained from the experimental e–p data for a low range of pressure and those can in turn be used to compute void ratios at higher vertical pressures. The stepwise procedure to calculate the e–p relationships at high pressure is given. The results showed that the agreement between the calculated and experimental compression characteristics at large vertical pressures is very good for the clays considered in this study.Key words: clays, compressibility, consolidation, expansive soils.


1991 ◽  
Vol 31 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Hyeongjoo Kim ◽  
Hiroshi Yoshikuni ◽  
Kazuhiro Tsurugasaki

2003 ◽  
Vol 40 (2) ◽  
pp. 460-475 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonite and sand–bentonite mixtures are attracting greater attention as buffer material for repositories of high-level nuclear waste. This buffer material is expected to fill up the space between the canisters containing the waste and the surrounding ground by swelling. To produce the specifications, such as dry density, sand–bentonite mass ratio, and dimensions, of the buffer material, the swelling characteristics of compacted bentonite and sand–bentonite mixtures must be evaluated quantitatively. New equations for evaluating the swelling behavior of compacted bentonite and sand–bentonite mixtures are presented that can accommodate the influences of the sand–bentonite mass ratio and the exchangeable-cation composition of bentonite. The new method for predicting swelling characteristics is presented by combining the new equations with the theoretical equations of the Gouy–Chapman diffuse double layer theory and of the van der Waals force, which can evaluate the repulsive and attractive forces of montmorillonite mineral (i.e., the swelling clay mineral in bentonite). Furthermore, the applicability of the new prediction method has been confirmed by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites and sand–bentonite mixtures.Key words: bentonite, diffuse double layer theory, van der Waals force, nuclear waste disposal, swelling deformation, swelling pressure.


2021 ◽  
Vol 337 ◽  
pp. 04004
Author(s):  
Takayuki Motoshima ◽  
Sachie Iso ◽  
Tomoyoshi Nishimura

This study presents result of HMC experimental test and discussions of chemical effort in Cabentonite. SWCC test, swelling pressure test and unconfined compression test as hydro-mechanical-chemical (HMC) test were applied to Cabentonite-sand mixture. Na-type bentonite has been studied to predict safety and confidence for artificial barrier layer consist of bentonite that many experimental research reports are represented, and can offer technology advanced comprehensive performance due to mathematical simulation models associated to physical parameters on thermal-hydration-mechanical-chemical properties. This study proposed a significant property for calcium bentonite to relate evaluating safety in radioactive waste disposal system, which emphasised much influence of suction and salinity chloride to hydration-mechanical behaviour for Calcium bentonite.


2020 ◽  
Vol 195 ◽  
pp. 03043
Author(s):  
Zhixiong Zeng ◽  
Yu-Jun Cui ◽  
Nathalie Conil ◽  
Jean Talandier

Compacted MX80 bentonite/Callovo-Oxfordian (COx) claystone mixture has been considered as a possible sealing/backfilling material in the French deep geological radioactive waste disposal. The swelling pressure of such mixture is an important factor in the design and long-term safety assessment of deep geological repositories. In this study, constant-volume swelling pressure tests were performed on the mixtures with different claystone fractions and dry densities. The test results show that the swelling pressure of the mixtures decreased with the increasing claystone fraction and decreasing dry density. According to the experimental results, the contribution of claystone to the global swelling pressure was further investigated. It was found that the deformation of claystone and its contribution to swelling pressure was highly dependent on the claystone fraction. As the claystone fraction was larger than 30%, the claystone in the mixture swelled, contributing to the global swelling pressure; On the contrary, as the claystone fraction was less than 30%, the swelling of claystone was inhibited by the bentonite and it worked an inert material without any contribution to the swelling pressure.


Sign in / Sign up

Export Citation Format

Share Document