On the undrained unloading behaviour of gassy sands

2009 ◽  
Vol 46 (11) ◽  
pp. 1267-1276 ◽  
Author(s):  
A. Amaratunga ◽  
J. L.H. Grozic

Soils that contain large amounts of dissolved gas within the pore fluid are called gassy soils. Gassy soils are common in marine environments and it is important to further our understanding of the unloading behaviour of gassy soils because of their potential to initiate and propagate submarine slope failures. This paper focuses on the pore-pressure responses and volumetric strains of loose gassy sands under different undrained unloading stress paths in laboratory specimens. Special attention was given to the constant deviatoric stress (q-constant) undrained unloading stress path as it simulates the stress condition imposed by tidal drawdown — one of the potential triggers of landslides in gaseous marine sediments. Gas exsolution was observed when the pore pressure was reduced below the liquid gas saturation pressure. Upon further decreases in total stress, the resulting pore-pressure change was much less than the total stress change; hence, effective stress decreased rapidly and at a certain point the samples tested under the q-constant stress path collapsed. This paper has experimentally and theoretically shown that gas in free and (or) dissolved form is detrimental in undrained unloading stress paths.

Volume 3 ◽  
2004 ◽  
Author(s):  
Shin-Ichi Tsuda ◽  
Shu Takagi ◽  
Yoichiro Matsumoto

Bubble nucleation and growth of formed nuclei are investigated by molecular dynamics simulation in Lennard-Jones liquid with gas impurities. For the onset of nucleation from bulk, it has been found that a dissolved gas whose interaction is very weak and whose diameter is larger than that of solvent molecules makes the action to cause composition fluctuation or local phase separation so strong that the nucleation probability predicted from pressure change becomes qualitatively wrong. It has been confirmed that this wrong prediction is generally explained by introducing the superheat ratio nondimensionalized by saturation pressure and spinodal pressure. For the growth stage of formed bubble nuclei, it is observed that the coalescence of nuclei occurs when a weak-interaction gas is dissolved at a high concentration while the competition between neighbor nuclei is dominant in the case of pure liquid.


2014 ◽  
Vol 580-583 ◽  
pp. 123-128
Author(s):  
Issam Hanafi ◽  
Fouad Dimane ◽  
Francisco Mata Cabrera ◽  
José Tejero Manzanares

In this work, one-dimensional problem has a well-known linear solution and, thus, provides a simple verification of the consolidation capability using numerical solution. The coupling is approximated by the effective stress principle, which treats the saturated soil as a continuum, assuming that the total stress at each point is the sum of an effective stress carried by the soil skeleton and a pore pressure in the fluid permeating the soil. This fluid pore pressure can change with, and the gradient of the pressure through the soil that is not balanced by the weight of fluid between the points in question will cause the fluid to flow: the flow velocity is proportional to the pressure gradient in the fluid according to Darcy's law. A typical case is a consolidation problem. Here the addition of a load to a body of soil causes pore pressure to raise initially; then, as the soil skeleton takes up the extra stress, the pore pressures decay as the soil consolidates. The Terzaghi problem is the simplest example of such a process. For illustration purposes, the problem is treated with and without finite-strain effects. The numerical solution agrees reasonably well with the analytical solution, with some loss of accuracy at later times.


2011 ◽  
Vol 250-253 ◽  
pp. 2093-2097
Author(s):  
Chen Bin ◽  
Jun Neng Ye ◽  
Gan Bin Liu

Based on a series of consolidated-undrained stress path tests, the mechanical characteristics of Ningbo marine deposit soft clay under K0 consolidation condition are systematically studied for different consolidation pressure, i.e.,60, 120 and 200kPa, in the GDS stress path triaxial system. Three kinds of stress path, i.e., DE (increase p), DG(constant p) and DF(reduce p), are carried out, and the characteristics of stress-axial strain relation, stress path and strength under different stress paths are compared. The test results show that the effective stress paths under consolidated-undrained shear are mainly related to initial consolidation, and the controlled shear mode has evident effect on the effective stress paths. In addition, the stress path has a certain influence on both the total stress and the effect stress strength.


2000 ◽  
Vol 3 (05) ◽  
pp. 394-400 ◽  
Author(s):  
M. Khan ◽  
L.W. Teufel

Summary Reservoir stress path is defined as the ratio of change in effective horizontal stress to the change in effective vertical stress from initial reservoir conditions during pore-pressure drawdown. Measured stress paths of carbonate and sandstone reservoirs are always less than the total stress boundary condition (isotropic loading) and are either greater or less than the stress path predicted by the uniaxial strain boundary condition. Clearly, these two boundary-condition models that are commonly used by the petroleum industry to calculate changes in effective stresses in a reservoir and to measure reservoir properties in the laboratory are inaccurate and can be misleading if applied to reservoir management problems. A geomechanical model that incorporates geologic and geomechanical parameters was developed to more accurately predict the reservoir stress path. Numerical results show that reservoir stress path is dependent on the size and geometry of the reservoir and on elastic properties of the reservoir rock and bounding formations. In general, stress paths become lower as the aspect ratio of reservoir length to thickness increases. Lenticular sandstone reservoirs have a higher stress path than blanket sandstone reservoirs that are continuous across a basin. This effect is enhanced when the bounding formations have a lower elastic modulus than the reservoir and when the reservoir is transversely isotropic. In addition, laboratory experiments simulating reservoir depletion for different stress path conditions demonstrate that stress-induced permeability anisotropy evolves during pore-pressure drawdown. The maximum permeability direction is parallel to the maximum principal stress and the magnitude of permeability anisotropy increases at lower stress paths. Introduction Matrix permeability and pore volume compressibility are fundamentally important characteristics of hydrocarbon reservoirs because they provide measures of reservoir volume and reservoir producibility. Laboratory studies have shown that these properties are stress sensitive and are usually measured under hydrostatic (isotropic) loads that do not truly reflect the anisotropic stress state that exists in most reservoirs and do not adequately simulate the evolution of deviatoric stresses in a reservoir as the reservoir is produced. Recent laboratory studies1–3 have shown that permeability and compressibility are dependent on the deviatoric stress and change significantly with reservoir stress path. In-situ stress measurements in carbonate and clastic reservoirs indicate that the reservoir stress path is not isotropic loading (equal to 1.0) and can range from 0.14 to 0.76. 4 The measured reservoir stress paths are also inconsistent with the elastic uniaxial strain model5 commonly used to calculate horizontal stress and changes in horizontal stress with pore-pressure drawdown. The calculated uniaxial strain stress path can be significantly less or greater than the measured stress path.4 Knowledge of the stress path that reservoir rock will follow during production and how this stress path will affect reservoir properties is critical for reservoir management decisions necessary to increase reservoir producibility. However, in-situ stress measurements needed to determine reservoir stress path are difficult and expensive to conduct, and may take several years to collect. Various analytical models have been proposed to calculate in-situ horizontal stresses and they could be applied to the prediction of reservoir stress path during pore-pressure drawdown.5–9 However, none of these models addresses all of the essential geological and geomechanical factors that influence reservoir stress path, such as reservoir size and geometry or the coupled mechanical interaction between the reservoir and the bounding formations. Accordingly, a geomechanical model was developed to more accurately predict reservoir stress path. The model incorporates essential geological and geomechanical factors that may control reservoir stress path during production. In addition, laboratory results showing the effect of reservoir stress path on permeability and permeability anisotropy in a low-permeability sandstone are also presented. These experiments clearly demonstrate that during pore-pressure drawdown permeability decreases and that permeability parallel and perpendicular to the maximum stress direction decreases at different rates. The smallest reduction in permeability is parallel to the maximum principal stress. Consequently, stress-induced permeability anisotropy evolves with pore-pressure drawdown and the magnitude of permeability anisotropy increases at lower stress paths. Field Measurements of Stress Path in Lenticular Sandstone Reservoirs Salz10 presented hydraulic fracture stress data and pore-pressure measurements from reservoir pressure build-up tests in low-permeability, lenticular, gas sandstones of the Vicksburg formation in the McAllen Ranch field, Texas (Table 1). This work was one of the first studies to clearly show that the total minimum horizontal stress is dependent on the pore pressure. Hydraulic fractures were completed in underpressured and overpressured sandstone intervals from approximately 3100 to 3800 m. Some of the sandstones (9A, 10A, 11A, 12A, 13A, and 14A) were later hydraulically fractured a second time to improve oil productivity after several years of production. For initial reservoir conditions before production, the total minimum horizontal stress shows a decrease with decreasing pore pressure for different sandstone reservoirs. The effective stress can also be determined from these data. Following Rice and Cleary11 effective stress is defined by σ = S − α P , ( 1 ) where ? is the effective stress, S is the total stress, ? is a poroelastic parameter, and P is the pore pressure. For this study ? is assumed to equal unity. A linear regression analysis of the minimum horizontal and vertical effective stress data shows that at initial reservoir conditions the ratio of change in minimum effective horizontal stress to the change in effective vertical stress with increasing depth and pore pressure is 0.50.


Géotechnique ◽  
2022 ◽  
pp. 1-35
Author(s):  
S. L. Chen ◽  
Y. N. Abousleiman

A novel graphical analysis-based method is proposed for analysing the responses of a cylindrical cavity expanding under undrained conditions in modified Cam Clay soil. The essence of developing such an approach is to decompose and represent the strain increment/rate of a material point graphically into the elastic and plastic components in the deviatoric strain plane. It allows the effective stress path in the deviatoric plane to be readily determined by solving a first-order differential equation with the Lode angle being the single variable. The desired limiting cavity pressure and pore pressure can be equally conveniently evaluated, through basic numerical integrations with respect to the mean effective stress. Some ambiguity is clarified between the generalized (work conjugacy-based) shear strain increments and the corresponding deviatoric invariants of incremental strains. The present graph-based approach is also applicable for the determination of the stress and pore pressure distributions around the cavity. When used for predicting the ultimate cavity/pore pressures, it is computationally advantageous over the existing semi-analytical solutions that involve solving a system of coupled governing differential equations for the effective stress components. It thus may serve potentially as a useful and accurate interpretation of the results of in-situ pressuremeter tests on clay soils.


2007 ◽  
Vol 44 (6) ◽  
pp. 659-672 ◽  
Author(s):  
Jong-Sub Lee ◽  
J Carlos Santamarina

The duration of liquefaction in small models is very short, therefore special monitoring systems are required. In an exploratory sequence of liquefaction tests, S-wave transillumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. These data are complemented with measurements of acceleration, time-varying settlement, excess pore pressure, and resistivity profiles. Measurements show that excess pore pressure migration from liquefied deep layers may cause or sustain a zero effective stress condition in shallow layers, that multiple liquefaction events may take place in a given formation for a given excitation level, and that unsaturated layers may also reach a zero effective stress condition. The time scale for excess pore pressure dissipation in fully submerged specimens is related to particle resedimentation and pressure diffusion; downward drainage from unsaturated shallow layers may contribute an additional time scale. High resolution resistivity profiling reveals the gradual homogenization of the soil bed that takes place during subsequent liquefaction events. The S-wave transillumination technique can be extended to field applications and implemented with tomographic coverage to gain a comprehensive understanding of the spatial and temporal evolution of liquefaction.Key words: densification, electrical resistivity, multiple liquefaction, pore pressure, shear wave, spatial variability.


2022 ◽  
Author(s):  
Ruqaiya Al Zadjali ◽  
Sandeep Mahaja ◽  
Mathieu M. Molenaar

Abstract Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost. HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion. Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data. Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations. Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change. Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2. Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.


1995 ◽  
Vol 32 (6) ◽  
pp. 1002-1023 ◽  
Author(s):  
Mohammed M. Morsy ◽  
N.R. Morgenstern ◽  
D.H. Chan

Tar Island Dyke is a 92 m tailing dyke for retaining oil sand tailings and has been operated by Suncor in Fort McMurray, Alberta. Construction of the dyke began in the mid-1960's adjacent to the Athabasca river. The foundation of the dyke consists of a layer of interbedded silts and clay overlying a basal sand stratum. Stresses imposed by the dyke on the foundation clay have been causing continuing movement of the structure over 30 years. Movements of the dyke have been monitored for over 25 years and show significant creep deformation of over 1 m in the foundation clay. Pore pressure in the clay was monitored, with little pore pressure change during this period. Therefore the movement was mostly due to creep rather than consolidation. The unique feature of this case is that the loading due to the dyke has been essentially constant for over 15 years but movement has continued. An effective stress model for creep is adopted to simulate the construction of the Tar Island Dyke. The model is based on critical state soil mechanics and uses secondary consolidation and the Taylor Singh-Mitchell creep relationships. The model is able to capture the movement of the dyke and its foundation, and good agreement is obtained between the calculated and measured deformations. A sensitivity study has been carried out to study the effect of varying the creep parameters on the results of the analysis. Key words : Tar Island Dyke, creep mechanism, finite element, clay foundation, effective stress model, pore-water pressure.


Author(s):  
Caroline Bessette ◽  
Samuel Yniesta

ABSTRACT Several building codes, such as the National Building Code of Canada, recommend that an effective stress ground response analysis be performed if a liquefiable stratum is identified within a soil profile. Although, constitutive models for total stress ground response analysis have been well verified against earthquake recordings, existing models for effective stress ground response analysis have yet to be thoroughly validated. This article investigates the predictions of five pore pressure models derived for effective stress ground response analysis. First, a dataset of five downhole arrays and two centrifuge experiments in which a potential of liquefaction was identified is presented. The profiles and ground-motion recordings are selected to represent a broad range of soil properties, ground-motion intensities, and excess-pore pressure generation levels. The differences between predictions of the effective stress models against commonly used 1D ground response total stress equivalent-linear and nonlinear analyses are evaluated. The predicted and measured motions are compared in terms of spectral response and amplification factor. The pore pressure response of all models is evaluated as a function of shear strain and found to agree well with published correlations representing the expected behavior of liquefiable soils. Although, the models show the ability to capture liquefaction triggering, the results indicate that for the selected dataset, total stress simulations were found to be, at least, as precise and accurate as the effective stress simulations. Therefore, simplified models for effective stress ground analysis should be used with caution by practicing engineers to predict surface spectra but can be used confidently to assess the potential for liquefaction triggering.


Sign in / Sign up

Export Citation Format

Share Document