Directional Variation in Undrained Shear Strength and Fabric of Winnipeg Upper Brown Clay

1974 ◽  
Vol 11 (3) ◽  
pp. 430-437 ◽  
Author(s):  
A. K. Loh ◽  
R. T. Holt

The undrained shear strength and the fabric of a lacustrine clay from Winnipeg, Manitoba, have been determined with respect to the orientation of the natural bedding plane. Unconfined compression tests show that both the undrained shear strength and the normalized secant modulus of 'undisturbed' clay were anisotropic. The fabric, determined by X-ray diffraction analysis, was also found to be anisotropic in the 'undisturbed' samples. The same material in the remolded condition was isotropic with respect to both undrained shear strength and fabric. Observations of the failure plane have been used to calculate the resolved shear stress on the failure plane, and the results agree qualitatively with prediction, according to Jaeger's weak plane hypothesis. The variation of undrained shear strength with orientation may be due to (1) the clay fabric and (2) stratification, although these two factors may be interdependent.

2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


2021 ◽  
Vol 27 (10) ◽  
pp. 20-33
Author(s):  
Abeer F. Hussein ◽  
Ahmed S. Ali ◽  
Abbas J. Al-Taie

Plastic soil exhibits unfavorited geotechnical properties (when saturation), which causes negative defects to engineering structures. Different attempts (included various materials) were conducted to proffer solutions to such defects by experimenting in practical ways. On one hand, these attempts aimed to improve the engineering characteristics of plastic soil, and on the other hand, to use problematic waste materials as a stabilizer, like cement kiln dust, and to reduce environmental hazards. This paper explored the shrinkage, plasticity, and strength behavior of plastic soil enhanced with cement dust. The cement dust contents were 0%, 5%, 10%, 15% and 20% by dry weight of soil. An experimental series of shrinkage and plasticity tests and unconfined compression tests were carried out to explore the effects of cement dust on the quantitative amount of shrinkage, plasticity characteristics, and shear strength experienced by plastic soil. The effects of curing on soil strength were also investigated. The finding of this paper showed that the critical behavior and plasticity of plastic soil could be reduced by mixing the soil with 15% or 20% of cement dust. The undrained shear strength, cu, of plastic soil-cement dust mixtures increased with the increasing dust content up to 20%. In fact, this strength was affected by the curing period. The best enhancement was attained when the content of cement dust was 20%, and the undrained shear strength was increased more than three times at this content.


Author(s):  
Chee K. Wong ◽  
Martin Lun ◽  
Ron C.K. Wong

This paper presents an interpretation technique to quantify the effects of compaction state and matric suction on the undrained shear strength of compacted clay under confined undrained triaxial compression. This novel technique is based on the mathematical frameworks of SHANSEP (Stress History and Normalized Soil Engineering Property) method for saturated soil and BBM (Barcelona Basic model) for unsaturated soil. Test data of compacted Calgary till were analyzed and interpreted using the proposed technique. The interpretation technique is very useful in delineating the relative impacts of the factors on the behavioral trends in measured undrained shear strength. It was found that in addition to the initial compacted void ratio and suction, soil structure and failure mode exert significant influence on the undrained shear strength of compacted clay. This technique is attractive to engineering practitioners because the confined undrained compression tests (with no pore air and water pressure measurement) are much simpler and less time consuming compared to rigorous laboratory tests on unsaturated soil.


2021 ◽  
Author(s):  
Iyad Alkroosh ◽  
◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee ◽  
...  

This study investigated the influence of sand content on the mechanical behaviour of a low plasticity clay found in Iraq. Samples were prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the weight of the clay. Standard Proctor and unconfined compression tests were carried out and the optimum moisture content, maximum dry density, and undrained shear strength were determined. The results showed a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reached was 1.90 gm/cm3 corresponding to an optimum moisture content of 12%. In addition, it was also found that the undrained shear strength was inversely proportional to the increase of the percentage of sand. Thus, the dry density of the clay could be increased well above 1.70 g/cm3, which is the minimum dry density accepted as a compacted subgrade according to the Iraqi General Specifications for Roads and Bridges (2003); hence, the rejected low plasticity clay could be utilised by mixing with sand. The reasons for the increase of the dry density and the decrease of the undrained shear strength has been extensively discussed in the paper.


2021 ◽  
Author(s):  
SOLOMON KORMU ◽  
Alemineh Sorsa

Abstract The shear strength of the soil is an important factor to know the internal resistance of soil against external loads causing shearing forces. Shear strength parameters are mandatory for the analysis of load bearing capacity of the soil, the stability of Geotechnical structures and in analysing stress and strain characteristics of soils. The undrained shear strength is one type of shear strength parameter. This parameter is conducted by undisturbed samples. But due to handling, transportation, release of overburden pressure and poor laboratory conditions, it is difficult to obtain accurate undisturbed samples. So, prediction of undrained shear strength parameters (cu) for cohesive soil with the help of compaction characteristics provides a good alternative to minimize this problem. Therefore, this study was conducted to develop the correlation between undrained shear strength values with soil compaction characteristics specifically located in Burayu town. The study was carried out using thirty samples collected from the town. By using the test result regression based statistical analysis was carried out to develop the intended correlation. The parameters considered for this study are Atterberg's limits, Grain size analysis, Specific gravity, Compaction tests and unconfined compression test. The test procedures were based on AASHTO and ASTM laboratory test standards. These parameters are used to establish equations of correlations between undrained shear strength values with soil compaction. The soil type found in Burayu town was highly plastic red clay soil. Based on both single and multiple linear regression analysis relatively good correlation is obtained by combining undrained shear strength (qu ) with maximum dry density and optimum moisture content of red clay soil. From the correlation analysis the equations developed are qu = - 3105 + 1625 MDD + 40.9 OMC with coefficient of determination of R2 =0.828 for multiple linear regression and qu= - 1473 + 57.8 OMC and qu= - 4861 + 3910 MDD with coefficient of determination of R2=0.787 and R2 =0.601 for single linear regression respectively. Generally, the intended correlation obtained from the study area fulfil the basic requirement of regression.


2020 ◽  
Vol 26 (5) ◽  
pp. 95-105
Author(s):  
Ali F. Al-Baidhani ◽  
Abbas J. Al-Taie

Highly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undrained shear strength. The effect of curing on soil shear strength was included in this paper. It was found that the critical behavior of highly plastic soil can be mitigated by mixing with 20% or 30% of brick dust. The undrained shear strength of highly plastic clay mixed with brick dust increased with the increase of brick dust content up to 20%. It was affected by the curing period. The best improvement was achieved when the optimum content of brick dust was 20%. Finally, seven days of curing improved the undrained shear strength with over 100%.


2017 ◽  
Vol 32 (1) ◽  
pp. 8-13
Author(s):  
Krzysztof Załęski ◽  
Patryk Juszkiewicz ◽  
Paweł Szypulski

For the purpose of this article a program of geotechnical laboratory tests was performed on organic soil (mud) samples from one geological layer. All undisturbed samples were taken within the same excavation in square grid with a side about 30 cm. Differences between specimen parameters were found both at basic test results and at shear strength tests results. Based on all performed tests authors suggest carefulness in assuming geotechnical parameters of organic soil layers because of theirs spatial variability even in very close vicinity.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jianwen Ding ◽  
Xusong Feng ◽  
Yupeng Cao ◽  
Sen Qian ◽  
Feng Ji

Consolidated undrained triaxial compression tests were performed to investigate the shear strength behavior of the solidified dredged materials (SDM). The variation law of deviator stress and excess pore water pressure with the increase of the applied confining pressure was investigated. It is found that the shear strength envelope is consisted of two lines, and there exists a transitional stress on the intersection point. The undrained shear strength develops slightly with the increase of applied normal stress in the preyield state. However, the undrained shear strength increases significantly in the postyield state, and the strength envelope is nearly a straight line with the extension through the origin. Based on the triaxial test data and the binary medium model, a strength criterion considering strength evolution mechanism is proposed and the relevant parameters of the strength criterion were discussed. Comparisons of the predicted results and experimental data demonstrate that the proposed strength criterion can properly describe the strength evolution rules of the SDM.


2020 ◽  
Vol 857 ◽  
pp. 311-318
Author(s):  
Omar Hamdi Jasim ◽  
Doğan Çetin

This study aims to assess the impact of time on sawdust usage to enhance the behavior of the clay used in landfills. The soil used in this paper was brought from Büyükçekmece region / Istanbul. Four proportions (1, 2, 3 and 5) of the sawdust were added as a percentage of the dry weight of the soil. Soil-sawdust mixtures were compacted with the optimum water content corresponding to each percentage and samples were extracted. The extracted samples were divided into two groups, the immediate tests were performed on the first group while the second group was kept in special containers for long-term tests after 90 days. A series of undrained unconsolidated triaxial tests (UU) and unconfined compression tests (UCS) were performed on the specimens and compared with the row soil, in the immediate tests, the results from the UU triaxial test showed that the undrained shear strength was increased as the sawdust content increased and then decreased, it was conducted that the optimum sawdust content was 3%, it was increased the undrained shear strength by (39.5%) and (41.44%) for UU triaxial and Unconfined compression tests respectively. After 90 days of the curing period, it found that 2% is the optimum sawdust content, it was increased the undrained shear strength by (202.51%) and (176.64%) for UU triaxial and unconfined compression test respectively. In the immediate and long-term tests, the coefficient of permeability increased by (66.66) and (94.44%) as the sawdust increased from 0 to 5 % respectively. Sawdust increases the hydraulic conductivity of the clay. It can be concluded that the sawdust usage has a remarkable effect on the shear strength of the clay for both immediate and long-term tests.


Sign in / Sign up

Export Citation Format

Share Document