Bearing capacity of foundations on a weak sand layer overlying a strong deposit

1982 ◽  
Vol 19 (3) ◽  
pp. 392-396 ◽  
Author(s):  
A. M. Hanna

The ultimate bearing capacity of footings resting on subsoils consisting of a weak sand layer overlying a strong deposit has been investigated. Based on model tests of strip and circular footings in a loose or compact sand layer overlying a dense sand deposit, the classical equation of bearing capacity of footings on homogeneous sand was extended to cover cases of these footings in layered sands where the upper layer is the weaker. The theory compared well with the available model test results. Design charts are presented.


Author(s):  
Pragyan Paramita Das ◽  
Vishwas N. Khatri ◽  
Rakesh Kumar Dutta


2017 ◽  
Vol 17 (10) ◽  
pp. 06017018 ◽  
Author(s):  
Vishwas N. Khatri ◽  
Jyant Kumar ◽  
Shamim Akhtar




Author(s):  
Mehernosh Irani ◽  
Lyle Finn

An extensive model test program was conducted to explore the effectiveness of alternate strake designs to reduce Truss Spar VIV response. Different strake configurations were tested to minimize VIV response. The paper presents results of the model tests. The model test set-up is described, important parameters that are modeled (including hull and truss geometry, strake configuration, mass and mooring properties) and considerations of instrumentation and test methodology are discussed. The paper also describes the analysis of the test results and shows the effectiveness of new strake design. The present results are compared with VIV response of existing Truss Spars with conventional strake design.



2015 ◽  
Vol 773-774 ◽  
pp. 1518-1523 ◽  
Author(s):  
Aminaton Marto ◽  
Mohsen Oghabi ◽  
Nor Zurairahetty Mohd Yunus

Bearing capacity and settlement are two important parameters in geotechnical engineering. The bearing capacity of circular foundations on sandy soils is important to geotechnical practicing engineers. Design of foundations includes soil parameters and bearing capacity of foundation. This paper presents the results of laboratory experimental model tests of circular footings supported on sand deposit under static load. The finite element software Abaqus is used to compare the results. The effects of the relative density of the sand (30%, 50%, and 70%) and the diameter of circular footing (75 mm and 100 mm) are investigated. It can be concluded that the experimental test results fit quite well with the results of numerical method.



1993 ◽  
Vol 30 (3) ◽  
pp. 545-549 ◽  
Author(s):  
M.T. Omar ◽  
B.M. Das ◽  
V.K. Puri ◽  
S.C. Yen

Laboratory model test results for the ultimate bearing capacity of strip and square foundations supported by sand reinforced with geogrid layers have been presented. Based on the model test results, the critical depth of reinforcement and the dimensions of the geogrid layers for mobilizing the maximum bearing-capacity ratio have been determined and compared. Key words : bearing capacity, geogrid, model test, reinforced sand, shallow foundation.



Author(s):  
Braja M. Das ◽  
Kim H. Khing ◽  
Eun C. Shin

The load-bearing capacity of a weak clay subgrade can be increased by placing a strong granular base course of limited thickness on top of the clay layer. The load-bearing capacity can be increased further, or the thickness of the granular base course can be reduced, by separating both layers by a geogrid. Laboratory model test results for the ultimate bearing capacity of a rigid strip loading on the surface of a granular soil underlain by a soft clay with a layer of geogrid at the interface of the two soils are presented. The optimum thickness of the granular soil layer and the critical width of the geogrid layer required to derive the maximum benefit from the reinforcement were determined. Model test results on the permanent settlement of the rigid strip load caused by cyclic loading of low frequency are presented.



Author(s):  
Mehernosh Irani ◽  
Lyle Finn

The state-of-the art in model testing for Vortex Induced Vibrations (VIV) of Spars is presented. Important issues related to Spar VIV model testing are highlighted. The parameters that need to be modeled including hull geometry, strake configuration, mass and mooring properties and, considerations of test set-up and instrumentation are discussed. Results are presented from model tests of an as-built Spar deployed in the Gulf of Mexico. It is shown that the model test results compare well with the VIV responses measured in the field.



2012 ◽  
Vol 256-259 ◽  
pp. 65-70
Author(s):  
Cheng Hua Wang ◽  
Juan Su ◽  
Gan Wang

In order to study the vertical bearing behavior of bored piles with breakage defects, a series of methods for simulation of normal piles and broken piles in laboratory was developed and used to investigate the vertical bearing behavior of these piles. The load-settlement curves of normal piles and broken piles were measured and analyzed. The tests revealed that the upper part of a broken pile works alone as a short pile before it contact with the lower part of the pile at the end of the first sudden drop stage.The analysis of the test results showed that the position of the breakage defect has a great influence on the lost in vertical bearing capacity of the pile.





Sign in / Sign up

Export Citation Format

Share Document