A chart for estimating the average vertical stress increase in an elastic foundation below a uniformly loaded rectangular area

1984 ◽  
Vol 21 (4) ◽  
pp. 710-713 ◽  
Author(s):  
D. V. Griffiths

In spite of the considerable assumptions involved, stress distribution charts based on elastic theory are still used by engineers to estimate stresses induced in soil masses by surface loading. Although there are limited data comparing calculated and measured stress increments, vertical stress components have been predicted quite reliably by this method. The chart presented here enables the average vertical stress increment beneath a corner of a uniformly loaded rectangular area to be estimated. The results are based on numerical integration of existing solutions for the rectangle problem, and should reduce the need for sublayers when calculating consolidation settlements. Key words: stress distribution, elasticity, design graph, rectangular footing, consolidation.

1991 ◽  
Vol 28 (1) ◽  
pp. 160-161 ◽  
Author(s):  
Brian Cooke

In a centrifuge model, the vertical stress distribution is nonlinear because of the variation of the model's "gravity" field with the centrifuge radius from the top to the bottom of the model. Thus in calculating the centrifugal acceleration, and hence the scale of the model, care must be taken to use the definition of centrifuge radius that minimizes the stress error in the model profile. This paper demonstrates that this optimum radius is measured from the centre of rotation to a point 0.59 times the model height from the bottom of the model. Key words: centrifuge, stress, error.


1987 ◽  
Vol 24 (1) ◽  
pp. 143-145 ◽  
Author(s):  
J. C. Thompson ◽  
B. Lelievre ◽  
R. D. Beckie ◽  
K. J. Negus

Based on the Boussinesq formula, exact formulae are derived for the vertical stress beneath the corner of an arbitrarily shaped triangular surface region subjected to vertical pressures with a uniform, linear, or quadratic distribution. These formulae are the basis of a proposed analysis technique in which any arbitrarily shaped loading region is approximated by a set of triangular regions. Computer algorithms that take advantage of the highly repetitive, yet simple, mathematical operations can readily be implemented on the computational facilities currently available to most engineers. Key words: triangular or arbitrarily shaped load regions, vertical stress distribution, computer solution.


Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050090
Author(s):  
Yang Lv ◽  
Jia-Qi Lv ◽  
Zheng Zhao

A thin rectangular steel wall in a steel shear wall structure always simultaneously sustains the lateral load and the gravity load. The gravity load can affect the shear strength of a steel shear wall. However, this effect is not considered in most of the research and standards, which may lead to potential danger in practice. From the previous study of the authors, the shear strength reduction was not only influenced by the load magnitude but also by the vertical stress distribution. For a simply-supported thick square wall, i.e. width to thickness ratio smaller than 100, the stress distribution can be accurately described in a cosine form. However, for a thin wall under compression and in-plane bending, the cosine distribution will largely overestimate the vertical stress, especially when the walls enter the post-buckling condition. To narrow the knowledge gap, this paper proposed a vertical stress distribution in a three-segment form, i.e. in both edge-segments, a combination of linear and cosine functions from the edge stresses to the minimum stress, while in the middle segment, the stress distribution is constant and equal to the minimum stress. Two strategies, i.e. effective width method and Bedair’s method, are chosen to determine the width of the edge portion. A finite element model (FEM) is developed to evaluate the proposed distribution. The FEM has been verified using the results of our own experiments and tests done by Zaraś et al. The results show that the proposed three-segment stress distribution can well describe the behavior of thin walls of different slendernesses and stress gradients. The cosine distribution obtained from theoretical solution and the effective width model by Bedair are also discussed.


2007 ◽  
Vol 561-565 ◽  
pp. 2033-2036
Author(s):  
Rui Wen Li ◽  
Ping Dong

Beryllium (Be) is susceptible to introduce stress because it is a brittle metal with a high elastic modular. The compact tension (CT) specimens of beryllium were designed to determinate stress and fracture behaviors. Stress distribution near notch in CT beryllium was measured by the combination of an X-ray stress analysis and a custom-designed load device. The results show that local stresses near notch tip are much higher than those on other area. Thus, stress concentration lead the CT specimens fracture along the notch direction. Residual stresses due to machining are remained. A finite element ( FE ) calculation on the same loaded geometry was made, and the result is agreement with the measured stress distribution near notch.


Géotechnique ◽  
1965 ◽  
Vol 15 (4) ◽  
pp. 396-408
Author(s):  
Robert L. Kondner ◽  
Raymond J. krizek

2015 ◽  
Vol 152 ◽  
pp. 52-66 ◽  
Author(s):  
Per Schjønning ◽  
Matthias Stettler ◽  
Thomas Keller ◽  
Poul Lassen ◽  
Mathieu Lamandé

Sign in / Sign up

Export Citation Format

Share Document