The influence of near face behaviour on monitoring of deep tunnels

1991 ◽  
Vol 28 (2) ◽  
pp. 226-238 ◽  
Author(s):  
F. Pelli ◽  
P. K. Kaiser ◽  
N. R. Morgenstern

Convergence, radial displacements, and stress changes are often recorded during the advance of a tunnel for the observational tunnel design approach. In deep tunnels, instruments must be installed from underground and can seldom be placed in undisturbed ground. Consequently, observations are only partial records of the total change induced by an excavation and the influence of the three-dimensional state near the face must be considered. This paper presents results from numerical simulations to assess face effects on monitoring data. The influence of such aspects as in situ state of stress, anisotropy, nonlinearity, and plasticity (yielding ground) are evaluated. Guidelines for underground monitoring of deformations are given. Key words: tunnelling, monitoring, back-analysis, convergence, extensometers, numerical modelling.

2017 ◽  
Vol 26 (3) ◽  
pp. 179-190
Author(s):  
Igor Boyko ◽  
Liudmyla Skochko ◽  
Veronica Zhuk

Abstract The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.


2013 ◽  
Vol 731 ◽  
pp. 418-442 ◽  
Author(s):  
Bach Lien Hua ◽  
Claire Ménesguen ◽  
Sylvie Le Gentil ◽  
Richard Schopp ◽  
Bruno Marsset ◽  
...  

AbstractEvidence of persistent layering, with a vertical stacking of sharp variations in temperature, has been presented recently at the vertical and lateral periphery of energetic oceanic vortices through seismic imaging of the water column. The stacking has vertical scales ranging from a few metres up to 100 m and a lateral spatial coherence of several tens of kilometres comparable with the vortex horizontal size. Inside this layering, in situ data display a $[{ k}_{h}^{- 5/ 3} { k}_{h}^{- 2} ] $ scaling law of horizontal scales for two different quantities, temperature and a proxy for its vertical derivative, but for two different ranges of wavelengths, between 5 and 50 km for temperature and between 500 m and 5 km for its vertical gradient. In this study, we explore the dynamics underlying the layering formation mechanism, through the slow dynamics captured by quasi-geostrophic equations. Three-dimensional high-resolution numerical simulations of the destabilization of a lens-shaped vortex confirm that the vertical stacking of sharp jumps in density at its periphery is the three-dimensional analogue of the preferential wind-up of potential vorticity near a critical radius, a phenomenon which has been documented for barotropic vortices. For a small-Burger (flat) lens vortex, baroclinic instability ensures a sustained growth rate of sharp jumps in temperature near the critical levels of the leading unstable modes. Such results can be obtained for a background stratification which is due to temperature only and does not require the existence of salt anomalies. Aloft and beneath the vortex core, numerical simulations well reproduce the $[{ k}_{h}^{- 5/ 3} { k}_{h}^{- 2} ] $ scaling law of horizontal scales for the vertical derivative of temperature that is observed in situ inside the layering, whatever the background stratification. Such a result stems from the tracer-like behaviour of the vortex stretching component and previous studies have shown that spectra of tracer fields can be steeper than $- 1$, namely in $- 5/ 3$ or $- 2$, if the advection field is very compact spatially, with a $- 5/ 3$ slope corresponding to a spiral advection of the tracer. Such a scaling law could thus be of geometric origin. As for the kinetic and potential energy, the ${ k}_{h}^{- 5/ 3} $ scaling law can be reproduced numerically and is enhanced when the background stratification profile is strongly variable, involving sharp jumps in potential vorticity such as those observed in situ. This raises the possibility of another plausible mechanism leading to a $- 5/ 3$ scaling law, namely surface-quasi-geostrophic (SQG)-like dynamics, although our set-up is more complex than the idealized SQG framework. Energy and enstrophy fluxes have been diagnosed in the numerical quasi-geostrophic simulations. The results emphasize a strong production of energy in the oceanic submesoscales range and a kinetic and potential energy flux from mesoscale to submesoscales range near the critical levels. Such horizontal submesoscale production, which is correlated to the accumulation of thin vertical scales inside the layering, thus has a significant slow dynamical component, well-captured by quasi-geostrophy.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Sign in / Sign up

Export Citation Format

Share Document