Behaviour of flexible batter piles under inclined loads in layered soil

1993 ◽  
Vol 30 (2) ◽  
pp. 247-256 ◽  
Author(s):  
G. G. Meyerhof ◽  
A. S. Yalcin

The behaviour of single free-head model flexible vertical and batter piles under central inclined loads in two-layered soil is investigated. The bearing capacity of the piles is found to depend on the layered structure, load inclination, and pile batter. The theoretical estimates obtained from semiempirical relations agree well with the test results. Previous displacement equations for flexible batter piles in elastic isotropic soil are modified for piles in anisotropic layered soil using an effective embedment depth of equivalent rigid piles. Practical equations for horizontal and vertical displacements of flexible batter piles are presented on the basis of resultant influence factors that are related to the batter angle, load inclination, and distribution of soil modulus with depth. The observed horizontal and vertical displacements of the piles are in reasonable agreement with the theoretical estimates, which are also supported by the results of some field cases. Key words : bearing capacity, deformation, batter pile, inclination factor, inclined load, layered soil, model test, sand, clay.


1994 ◽  
Vol 31 (4) ◽  
pp. 583-590 ◽  
Author(s):  
G.G. Meyerhof ◽  
A.S. Yalcin

The behaviour of single free-head model flexible vertical and batter piles under the general case of eccentric and inclined loads in two-layered soil is investigated. The bearing capacity of the piles is found to depend on the layered structure, the eccentricity and inclination of the load, and the pile batter. The theoretical estimates of ultimate loads obtained from semiempirical relations agree fairly well with the test results. Key words : bearing capacity, deformation, batter pile, eccentricity factor, eccentric load, inclination factor, inclined load, layered soil, model test, sand, clay.



1981 ◽  
Vol 18 (2) ◽  
pp. 297-300 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in clay has been determined under various inclinations of the load, varying from the vertical to horizontal directions. The results of load tests on single model piles of different lengths and inclinations and on free-standing groups and piled foundations are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.



1973 ◽  
Vol 10 (1) ◽  
pp. 71-85 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

Following the previous investigation reported in the first part on vertical piles, this second part of the paper presents an analysis of the results of loading tests on rigid batter piles under inclined load in sand. The bearing capacity of axially loaded batter piles is discussed by comparing experimental results and theoretical estimates. The theory for ultimate resistance of rigid vertical piles under horizontal loads is extended to that of laterally loaded batter piles. Model test results are compared with those of theoretical estimates and good agreement is found. Methods of analysis of vertical piles under inclined loads are extended to those of rigid batter piles under inclined loads in sand and the analysis is compared with some test results.



1972 ◽  
Vol 9 (4) ◽  
pp. 430-446 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

The bearing capacity of rigid vertical and batter piles under inclined loads in sand has been determined for model piles of different depth/diameter ratios. The first part of this paper deals with vertical piles and the second part will consider batter piles. The results of loading tests on free standing and piled foundations under inclinations of load varying from vertical to horizontal are analyzed. On the basis of plastic theory, a new approach for analysis of rigid vertical piles under horizontal loads is developed by extending Brinch Hansen's method; and previous methods of analysis by Meyerhof are extended to estimate the bearing capacity of vertical piles under inclined loads in sand. Loads on vertical piles are found to be in reasonable agreement with the proposed theories.



1994 ◽  
Vol 31 (4) ◽  
pp. 513-520 ◽  
Author(s):  
V.V.R.N. Sastry ◽  
G.G. Meyerhof

The lateral soil pressures, bending moments, pile displacements at ground surface, and bearing capacity of instrumented vertical single flexible model piles in layered sands consisting of loose sand overlying compact sand under vertical eccentric and central inclined loads have been investigated. The results of these load tests are compared with theoretical estimates based on the concept of an effective embedment depth of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted behaviour of flexible piles. The analyses are also compared with the results of some field case records. Key words : bearing capacity, instrumentation, model test, layered soil, pile, sand.



1995 ◽  
Vol 32 (2) ◽  
pp. 204-222 ◽  
Author(s):  
G. G. Meyerhof

Previous analyses of the ultimate resistance and displacements of rigid piles under lateral loads and moments have been extended to the general case of eccentric and inclined loads on flexible piles by using the concept of effective embedment depths of equivalent rigid piles. Recent research on the behaviour of large model tests on instrumented rigid and flexible piles under eccentric and inclined loads in sand, clay, and layered soil is summarized. Reasonable agreement is found between observed and predicted behaviour. The proposed method of analysis is also supported by comparison with the results of many field case records of single piles and large pile groups under lateral loads indifferent types of soils. Key words : bearing capacity, displacement, eccentric loads, inclined loads, layered soil, pile.



1981 ◽  
Vol 18 (4) ◽  
pp. 514-519 ◽  
Author(s):  
G. G. Meyerhof ◽  
S. K. Mathur ◽  
A. J. Valsangkar

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in layered sand has been determined under various inclinations of the load varying from the vertical to horizontal directions. The results of load tests on single model piles of different inclinations and on free-standing groups are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.



2010 ◽  
Vol 163-167 ◽  
pp. 11-15
Author(s):  
Wen Qi Hou ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Abstract. In the presented paper, reverse push-out test method was put forward and applied in the ultimate bearing capacity experiments of studs with concrete slab in tension. Ultimate bearing capacity experiments were carried out on 22 reverse push-out specimens composed of C50 or C40 concrete, 14MnNbq steel girder and Φ22studs. Results showed that ultimate bearing capacity of studs, pu, in tensile concrete slab is controlled by concrete failur, concrete strength, studs arragement and reinforcement ratio are the main influence factors of pu. Compared with that in compressive concrete, pu of Φ22 studs in tensile concrete is reduced about 30% averagely. According to the test results, a fitted load-slip relationship curve and a regression formula of pu for studs in tensile concrete were put forward, calculated results were in good agreement with the test results.



1987 ◽  
Vol 24 (4) ◽  
pp. 471-478 ◽  
Author(s):  
G. G. Meyerhof ◽  
V. V. R. N. Sastry

The results of full-displacement pressuremeter tests in beds of sand, clay, and layered soil have been used to estimate the lateral soil pressures, ultimate capacity, and displacements of instrumented rigid model piles under eccentric and inclined loads. Comparisons of these estimates with observations on the piles under horizontal load and pure moment have been made and reasonable agreement is found. The analyses are also compared with some field case records. Key words: bearing capacity, clay, displacements, horizontal load, lateral pressure, layered soil, model test, moment, pile, pressuremeter, sand.



Sign in / Sign up

Export Citation Format

Share Document