The Bearing Capacity of Rigid Piles Under Inclined Loads in Sand. II: Batter Piles

1973 ◽  
Vol 10 (1) ◽  
pp. 71-85 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

Following the previous investigation reported in the first part on vertical piles, this second part of the paper presents an analysis of the results of loading tests on rigid batter piles under inclined load in sand. The bearing capacity of axially loaded batter piles is discussed by comparing experimental results and theoretical estimates. The theory for ultimate resistance of rigid vertical piles under horizontal loads is extended to that of laterally loaded batter piles. Model test results are compared with those of theoretical estimates and good agreement is found. Methods of analysis of vertical piles under inclined loads are extended to those of rigid batter piles under inclined loads in sand and the analysis is compared with some test results.

1994 ◽  
Vol 31 (4) ◽  
pp. 583-590 ◽  
Author(s):  
G.G. Meyerhof ◽  
A.S. Yalcin

The behaviour of single free-head model flexible vertical and batter piles under the general case of eccentric and inclined loads in two-layered soil is investigated. The bearing capacity of the piles is found to depend on the layered structure, the eccentricity and inclination of the load, and the pile batter. The theoretical estimates of ultimate loads obtained from semiempirical relations agree fairly well with the test results. Key words : bearing capacity, deformation, batter pile, eccentricity factor, eccentric load, inclination factor, inclined load, layered soil, model test, sand, clay.


1981 ◽  
Vol 18 (2) ◽  
pp. 297-300 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in clay has been determined under various inclinations of the load, varying from the vertical to horizontal directions. The results of load tests on single model piles of different lengths and inclinations and on free-standing groups and piled foundations are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.


1972 ◽  
Vol 9 (4) ◽  
pp. 430-446 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

The bearing capacity of rigid vertical and batter piles under inclined loads in sand has been determined for model piles of different depth/diameter ratios. The first part of this paper deals with vertical piles and the second part will consider batter piles. The results of loading tests on free standing and piled foundations under inclinations of load varying from vertical to horizontal are analyzed. On the basis of plastic theory, a new approach for analysis of rigid vertical piles under horizontal loads is developed by extending Brinch Hansen's method; and previous methods of analysis by Meyerhof are extended to estimate the bearing capacity of vertical piles under inclined loads in sand. Loads on vertical piles are found to be in reasonable agreement with the proposed theories.


1973 ◽  
Vol 10 (3) ◽  
pp. 428-438 ◽  
Author(s):  
G. G. Meyerhof ◽  
Gopal Ranjan

Following Part I on vertical piles and Part II on inclined piles the present Part III deals with the general principles for estimating ultimate capacity of a pile bent under inclined load. The results of loading tests on two model pile bents with depth/diameter ratios of 13 and 23 for free standing bents and 15 and 25 for piled bents are presented. Test results on free standing and piled bents are reported in compact and dense states of packing of sand. Bents with vertical and batter piles have been tested under inclinations of load varying from vertical to horizontal.The experimental results are discussed and conclusions regarding the behavior of free standing and piled bents under inclination of load, type of bent, and pile cap are drawn.


1993 ◽  
Vol 30 (2) ◽  
pp. 247-256 ◽  
Author(s):  
G. G. Meyerhof ◽  
A. S. Yalcin

The behaviour of single free-head model flexible vertical and batter piles under central inclined loads in two-layered soil is investigated. The bearing capacity of the piles is found to depend on the layered structure, load inclination, and pile batter. The theoretical estimates obtained from semiempirical relations agree well with the test results. Previous displacement equations for flexible batter piles in elastic isotropic soil are modified for piles in anisotropic layered soil using an effective embedment depth of equivalent rigid piles. Practical equations for horizontal and vertical displacements of flexible batter piles are presented on the basis of resultant influence factors that are related to the batter angle, load inclination, and distribution of soil modulus with depth. The observed horizontal and vertical displacements of the piles are in reasonable agreement with the theoretical estimates, which are also supported by the results of some field cases. Key words : bearing capacity, deformation, batter pile, inclination factor, inclined load, layered soil, model test, sand, clay.


1981 ◽  
Vol 18 (4) ◽  
pp. 514-519 ◽  
Author(s):  
G. G. Meyerhof ◽  
S. K. Mathur ◽  
A. J. Valsangkar

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in layered sand has been determined under various inclinations of the load varying from the vertical to horizontal directions. The results of load tests on single model piles of different inclinations and on free-standing groups are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.


1986 ◽  
Vol 23 (3) ◽  
pp. 387-392 ◽  
Author(s):  
A. M. Hanna ◽  
A. Afram

The pull-out capacity of single rigid vertical and batter piles in sand and subjected to axial loading has been investigated. Good agreement was found when test results on instrumented model piles were compared with theoretical estimates. The effect of pile inclination on the pull-out capacity has been explained by means of variable mobilized passive earth pressure on the pile's perimeter. A design method and charts are presented. Key words: pile foundation, pull-out capacity, vertical pile, batter pile, sand–soil mechanics.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sven Krabbenhoft ◽  
Johan Clausen ◽  
Lars Damkilde

This paper presents the results of a series of triaxial tests with dry sand at confining pressures varying from 1.5 kPa to 100 kPa at relative densities of 0.20, 0.59, and 0.84. The results, which are in reasonable accordance with an equation given by Bolton, show that the friction angle is strongly dependent on the stress level and on the basis of the test results, a nonlinear Mohr failure criterion has been proposed. This yield criterion has been implemented in a finite element program and an analysis of the bearing capacity of a circular shaped model foundation, diameter 100 mm, has been conducted. Comparisons have been made with results from 1g model scale tests with a foundation of similar size and a good agreement between numerical results and test results has been found.


2011 ◽  
Vol 368-373 ◽  
pp. 159-163 ◽  
Author(s):  
Xiao Hua Yang ◽  
Chao Yang Zhou ◽  
Xue Jun He ◽  
Zhi Qing Yang

A 1/4 scales four-storey model of post-tensioned unbonded prestressed concrete hollow slab-column structure has been made to do the ultimate load test on the second-storey floor. By measuring the floor deflection, stresses of steel bars and cracks of floors, the bearing capacity of floor is explored. The bearing capacity tests of floor are divided into three stages: elastic stage, crack growth stage and destruction stage. Based on the test results and crack developments in floor, a improved plastic hinge model is carried out to predict the ultimate loads. The calculated results of the ultimate loads with improved plastic hinge model are in good agreement with the experiment data.


1992 ◽  
Vol 19 (6) ◽  
pp. 960-964 ◽  
Author(s):  
D. B. Van Dyer

This paper is concerned with the initial load–slip behaviour of laterally loaded bolted timber joints and deals specifically with verifying a theory for determining the values of slip modulus in mechanically fastened timber joints. Such a theory is essential in dealing with the phenomenon of interlayer slip, which occurs in built-up timber columns with nonrigid joints. The concept of a beam on an elastic foundation is used to evaluate the slip modulus. The theoretical predictions are compared with the test results of 75 timber joints. Good agreement is observed between the experiment and the theory. Key words: timber joints, bolts, nails, wood, interlayer slip, slip modulus, built-up wood columns, shear, lateral loads.


Sign in / Sign up

Export Citation Format

Share Document