A Reference Temperature Method for Compressible Laminar Boundary Layers

1973 ◽  
Vol 2 (4) ◽  
pp. 201-204
Author(s):  
R. Camarero

A calculation procedure for the solution of two-dimensional and axi-symmetric laminar boundary layers in compressible flow has been developed. The method is an extension of the integral approach of Tani to include compressibility effects by means of a reference temperature. Arbitrary pressure gradients and wall temperature can be specified. Comparisons with experiments obtained for supersonic flows over a flat plate indicate that the method yields adequate results. The method is then applied to the solution of the boundary layer on a Basemann inlet.

1967 ◽  
Vol 29 (1) ◽  
pp. 187-199 ◽  
Author(s):  
Roddam Narasimha ◽  
S. K. Ojha

We consider here the higher order effect of moderate longitudinal surface curvature on steady, two-dimensional, incompressible laminar boundary layers. The basic partial differential equations for the problem, derived by the method of matched asymptotic expansions, are found to possess similarity solutions for a family of surface curvatures and pressure gradients. The similarity equations obtained by this anaylsis have been solved numerically on a computer, and show a definite decrease in skin friction when the surface has convex curvature in all cases including zero pressure gradient. Typical velocity profiles and some relevant boundary-layer characteristics are tabulated, and a critical comparison with previous work is given.


1969 ◽  
Vol 91 (3) ◽  
pp. 353-358 ◽  
Author(s):  
W. A. Gustafson ◽  
I. Pelech

The two-dimensional, incompressible laminar boundary layer on a strongly curved wall in a converging channel is investigated for the special case of potential velocity inversely proportional to the distance along the wall. Similarity solutions of the momentum equation are obtained by two different methods and the differences between the methods are discussed. The numerical results show that displacement and momentum thickness increase linearly with curvature while skin friction decreases linearly.


Author(s):  
Mark W. Johnson

Experimental data for laminar boundary layers developing below a turbulent free stream shows that the fluctuation velocities within the boundary layer increase in amplitude until some critical level is reached which initiates transition. In the near wall region, a simple model, containing a single empirical parameter which depends only on the turbulence level and length scale, is derived to predict the development of the velocity fluctuations in laminar boundary layers with favourable, zero or adverse pressure gradients. A simple bypass transition model which considers the streamline distortion in the near wall region brought about by the velocity fluctuations suggests that transition will commence when the local turbulence level reaches approximately 23%. This value is consistent with experimental findings. This critical local turbulence level is used to derive a bypass transition prediction formula which compares reasonably with start of transition experimental data for a range of pressure gradients (λθ = −0.01 to 0.01) and turbulence levels (Tu = 0.2% to 5%). Further improvement to the model is proposed through prediction of the boundary layer distortion, which occurs due to Reynolds stresses generated within the boundary layer at high free stream turbulence levels and also through inclusion of the effect of turbulent length scale as well as turbulence level.


1987 ◽  
Vol 179 ◽  
pp. 469-487 ◽  
Author(s):  
Ph. Gittler ◽  
A. Kluwick

Using the method of matched asymptotic expansions, the interaction between axisymmetric laminar boundary layers and supersonic external flows is investigated in the limit of large Reynolds numbers. Numerical solutions to the interaction equations are presented for flare angles α that are moderately large. If α > 0 the boundary layer separates upstream of the corner and the formation of a plateau structure similar to the two-dimensional case is observed. In contrast to the case of planar flow, however, separation can occur also if α < 0, owing to the axisymmetric effect of overexpansion and recompression. The separation point then is located downstream of the corner and, most remarkable, a hysteresis phenomenon is observed.


1993 ◽  
Vol 246 ◽  
pp. 503-527 ◽  
Author(s):  
Promode R. Bandyopadhyay ◽  
Anwar Ahmed

The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompanying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Górtler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.


1994 ◽  
Vol 116 (4) ◽  
pp. 759-764 ◽  
Author(s):  
M. W. Johnson

Experimental data for laminar boundary layers developing below a turbulent free stream show that the fluctuation velocities within the boundary layer increase in amplitude until some critical level is reached, which initiates transition. In the near-wall region, a simple model, containing a single empirical parameter, which depends only on the turbulence level and length scale, is derived to predict the development of the velocity fluctuations in laminar boundary layers with favorable, zero, or adverse pressure gradients. A simple bypass transition model, which considers the streamline distortion in the near-wall region brought about by the velocity fluctuations, suggests that transition will commence when the local turbulence level reaches approximately 23 percent. This value is consistent with experimental findings. This critical local turbulence level is used to derive a bypass transition prediction formula, which compares reasonably with start of transition experimental data for a range of pressure gradients (λ θ = −0.01 to 0.01) and turbulence levels (Tu = 0.2 to 5 percent). Further improvement to the model is proposed through prediction of the boundary layer distortion, which occurs due to Reynolds stresses generated within the boundary layer at high free-stream turbulence levels and also through inclusion of the effect of turbulent length scale as well as turbulence level.


2009 ◽  
Vol 623 ◽  
pp. 273-282 ◽  
Author(s):  
T. B. NICKELS

The constraints necessary for equilibrium solutions of the boundary layer equations are explored for turbulent boundary layers subject to lateral convergence and divergence and with longitudinal pressure gradients. It is shown that in addition to the well-known equilibrium solutions for two-dimensional boundary layers there are additionalpossibleequilibrium states for boundary layers with these extra rates-of-strain acting. The necessary constraints for equilibrium are derived and discussed.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


1996 ◽  
Vol 118 (4) ◽  
pp. 728-736 ◽  
Author(s):  
S. P. Mislevy ◽  
T. Wang

The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = −0.51 × 10−6 and K2 = −1.05 × 10−6. The fluctuation quantities, u′, ν′, t′, the Reynolds shear stress (uν), and the Reynolds heat fluxes (νt and ut) were measured. In general, u′/U∞, ν′/U∞, and νt have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of ν′ for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall region of high-turbulent shear generated at Y+ = 7. At stations farther downstream, this near-wall shear reduced in magnitude, while a second region of high-turbulent shear developed at Y+ = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y+ = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t′ in the near-wall region (Y+ < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large non turbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent fluctuations such that the production of turbulent spots was obscured. The turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Prt, are also presented.


Sign in / Sign up

Export Citation Format

Share Document