Camber In Electron-Beam Welded Stainless Steel Sections

Author(s):  
M. J. Bibby ◽  
J. A Goldak

Camber measurements in a series of small electron-beam (EB) welded stainless-steel Tee and bar sections are presented. The results are rationalized in terms of the semi-empirical deflection relationship for predicting camber in welded mild steel sections. It is demonstrated that the same relationship can be used for both austenitic stainless and carbon steel alloys. Some of the limits of camber predictability in terms of section size and heat input are discussed.

2018 ◽  
Vol 763 ◽  
pp. 440-449
Author(s):  
Hafez Taheri ◽  
George Charles Clifton ◽  
Ping Sha Dong ◽  
Michail Karpenko ◽  
Gary M. Raftery ◽  
...  

Steel structures are well established as the preferred material for constructing seismic resisting systems in New Zealand and around the world. While the majority of steel framing is made of carbon steel, stainless steel is increasingly being considered for designing exposed steel structures. Because of significant differences in the mechanical properties between the two materials, seismic resisting system design rules for connections between carbon steel members may not be applicable, at least without modification, to connections between stainless steel members. This study has investigated the seismic performance of welded T-shaped beam-column moment resisting connections made of structural stainless steel beams and columns manufactured by laser welding. The paper included the results of three large-scale T-shaped specimens, of varying sizes, subjected to seismic loads. The grade of laser-fused stainless steel was 304 L and its specification was according to ASTM A276. The sections were subject to the seismic tests in accordance with the SAC protocol given in ANSI/AISC 341-10. The results shows substantial amount of energy dissipation by welded moment resisting stainless steel connections along with a high ductility capability and dependable behaviour in the inelastic range.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6948
Author(s):  
Andrey Filippov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
Nikolai Savchenko ◽  
Evgeny Kolubaev ◽  
...  

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall’s height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall’s height).


2014 ◽  
Vol 11 (1) ◽  
pp. 116-122
Author(s):  
Baghdad Science Journal

The Corrosion protection effectiveness of Alimina(Al2O3,50nm)and Zinc oxide (ZnO,30nm) nanoparticales were studied on carbon steel and 316 stainless steel alloys in saline water (3.5%NaCl)at four temperatures: (20,30,40,50 OC)using three electrodes potentiostat. An average corrosion protection efficiencies of 65 %and 80% was achieved using Al2O3 NP's on carbon steel and stainless steel samples respectively, and it seems that no effect of rising temperature on the performances of the coated layers. While ZnO NP'S showed protection efficiency around 65% for the two alloys and little effected by temperature rising on the performanes of the coated layers. The morphology of the coated spesiemses was examined by Atomic force microscope.


Sign in / Sign up

Export Citation Format

Share Document