Influence of Nonlinearities on the Behavior of Parametrically Excited Articulated Pipes Conveying Fluid

Author(s):  
J. Rousselet ◽  
G. Herrmann

This paper presents the analysis of a system of articulated pipes hanging vertically under the influence of gravity. The liquid, driven by a slightly fluctuating pressure, circulates through the pipes. Similar systems have been analysed in the past by numerous authors but a common feature of their work is that the behavior of the fluid flow is prescribed, rather than left to be determined by the laws of motion. This leads to a linear formulation of the problem which can not predict the behavior of the system for finite amplitudes of motion. A circumstance in which this behavior is important arises in the stability analysis of the system in the neighbourhood of critical velocities, that is, flow velocities at which the system starts to flutter. Hence, the purpose of the present study was to investigate in greater detail the region close to critical velocities in order to find by how much these critical velocities would be affected by the amplitudes of motion. This led to a set of three coupled-nonlinear equations, one of which represents the motion of the fluid. In the mathematical development, use is made of a scheme which permits the uncoupling of the modes of motion of damped nonconservative dynamic systems. Results are presented showing the importance of the nonlinearities considered.

2005 ◽  
Vol 26 (6) ◽  
pp. 807-813 ◽  
Author(s):  
Wang Zhong-min ◽  
Zhang Zhan-wu ◽  
Zhao Feng-qun

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Tianshu Jiang ◽  
Mengzhe Zhou ◽  
Bi Shen ◽  
Wendi Xuan ◽  
Sijie Wen ◽  
...  

Bank crisis is grabbing more serious attention as several financial turmoils have broken out in the past several decades, which leads to a number of researches in this field. Comparing with researches carried out on basis of degree distribution in complex networks, this paper puts forward a mathematical model constructed upon dynamic systems, for which we mainly focus on the stability of critical point. After the model is constructed to describe the evolution of the banking market system, we devoted ourselves to find out the critical point and analyze its stability. However, to refine the stability of the critical point, we add some impulsive terms in the former model. And we discover that the bank crisis can be controlled according to the analysis of equilibrium points of the modified model, which implies the interference from outside may modify the robustness of the bank network.


1982 ◽  
Vol 49 (1) ◽  
pp. 217-223 ◽  
Author(s):  
S. T. Noah ◽  
G. R. Hopkins

A method is described for investigating the stability of the null solution for a general system of linear second-order differential equations with periodic coefficients. The method is based on a generalization of Hill’s analysis and leads to a generalized Hill’s infinite determinant. Following a proof of its absolute convergence, a closed-form expression for the characteristic infinite determinant is obtained. Methods for the stability analysis utilizing different forms of the characteristic determinant are discussed. For cases where the instabilities are of the simple parametric type, a truncated form of the determinant may be used directly to locate the boundaries of the resonance regions in terms of appropriate system parameters. The present generalized Hill’s method is applied to a multidegree-of-freedom discretized system describing pipes conveying pulsating fluid. It is demonstrated that the method is a flexible and efficient computational tool for the stability analysis of general periodic systems.


2022 ◽  
Vol 12 (2) ◽  
pp. 724
Author(s):  
Zilong Guo ◽  
Qiao Ni ◽  
Lin Wang ◽  
Kun Zhou ◽  
Xiangkai Meng

A cantilevered pipe conveying fluid can lose stability via flutter when the flow velocity becomes sufficiently high. In this paper, a dry friction restraint is introduced for the first time, to evaluate the possibility of improving the stability of cantilevered pipes conveying fluid. First, a dynamical model of the cantilevered pipe system with dry friction is established based on the generalized Hamilton’s principle. Then the Galerkin method is utilized to discretize the model of the pipe and to obtain the nonlinear dynamic responses of the pipe. Finally, by changing the values of the friction force and the installation position of the dry friction restraint, the effect of dry friction parameters on the flutter instability of the pipe is evaluated. The results show that the critical flow velocity of the pipe increases with the increment of the friction force. Installing a dry friction restraint near the middle of the pipe can significantly improve the stability of the pipe system. The vibration of the pipe can also be suppressed to some extent by setting reasonable dry friction parameters.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Theddeus T Akano ◽  
Olumuyiwa S Asaolu

This paper employs artificial intelligence in predicting the stability of pipes conveying fluid. Field data was collected for different pipe structures and usage. Adaptive Neuro-Fuzzy Inference System (ANFIS) model is implemented to predict the stability of the pipe using the fundamental natural frequency at different flow velocities as the index of stability. Results reveal that the neuro-fuzzy model compares relatively well with the conventional finite element method. It was also established that a pipe conveying fluid is most stable when the pipe is clamped at both ends but least stable when it is a cantilever.


1988 ◽  
pp. 27-40
Author(s):  
Dr. Zainol Anuar Mohd. Sharif ◽  
Ng Boon Choong

This paper describes the basic concept of the decomposition and aggregation method. It shows the feasibility of the method and its advantages when applied, particularly to large scale systems. This method is extensively used in solving problems related to control engineering, economics, optimization and stability. This paper also illustrates specifically the application of the method of decomposition and aggregation in the analysis of dynamic systems. It is divided into two important parts, namely; the decomposition part which involves breaking up a large system into subsystems and the aggregation part which is obtained through a reformulation of the Liapunov's second method (direct method). The relation between the decomposition and the aggregation methods is also shown. The procedure for checking the stability based on this concept is also outlined.For further illustration, an example of a dynamic system has been included. It shows how the system is decomposed and aggregated to suit the requirement for stability analysis.


Sign in / Sign up

Export Citation Format

Share Document