scholarly journals Influence of Dry Friction on the Dynamics of Cantilevered Pipes Conveying Fluid

2022 ◽  
Vol 12 (2) ◽  
pp. 724
Author(s):  
Zilong Guo ◽  
Qiao Ni ◽  
Lin Wang ◽  
Kun Zhou ◽  
Xiangkai Meng

A cantilevered pipe conveying fluid can lose stability via flutter when the flow velocity becomes sufficiently high. In this paper, a dry friction restraint is introduced for the first time, to evaluate the possibility of improving the stability of cantilevered pipes conveying fluid. First, a dynamical model of the cantilevered pipe system with dry friction is established based on the generalized Hamilton’s principle. Then the Galerkin method is utilized to discretize the model of the pipe and to obtain the nonlinear dynamic responses of the pipe. Finally, by changing the values of the friction force and the installation position of the dry friction restraint, the effect of dry friction parameters on the flutter instability of the pipe is evaluated. The results show that the critical flow velocity of the pipe increases with the increment of the friction force. Installing a dry friction restraint near the middle of the pipe can significantly improve the stability of the pipe system. The vibration of the pipe can also be suppressed to some extent by setting reasonable dry friction parameters.

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2609-2614 ◽  
Author(s):  
IN SOO SON ◽  
HAN IK YOON ◽  
SANG PIL LEE ◽  
DONG JIN KIM

In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by numerical method. That is, the effects of the rotating the rotating angular velocity, the mass ratio, the crack and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Finally, the stability maps of the cracked rotating pipe system as a rotating angular velocity and mass ratio β are presented.


Author(s):  
Kun Zhou ◽  
Qiao Ni ◽  
Wei Chen ◽  
Huliang Dai ◽  
Zerui Peng ◽  
...  

AbstractIn several previous studies, it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high. Recently, however, it has become clear that this conclusion may be at best incomplete. A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe. With the aid of the absolute nodal coordinate formulation (ANCF) and the extended Lagrange equations for dynamical systems containing non-material volumes, the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated. Based on extensive numerical calculations, the static equilibrium configuration, the stability, and the nonlinear dynamics of the considered pipe system are determined and analyzed. The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave, the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40. However, for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves, the first-mode buckling instability would take place at high flow velocity. Moreover, based on a further parametric analysis, the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation, the critical flow velocity for buckling instability, and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.


Author(s):  
C. Semler ◽  
M. P. Païdoussis

Abstract This paper deals with the nonlinear dynamics and the stability of cantilevered pipes conveying fluid, where the fluid has a harmonic component of flow velocity, assumed to be small, superposed on a constant mean value. The mean flow velocity is near the critical value for which the pipe becomes unstable by flutter through a Hopf bifurcation. The partial differential equation is transformed into a set of ordinary differential equations (ODEs) using the Galerkin method. The equations of motion contain nonlinear inertial terms, and hence cannot be put into standard form for numerical integration. Various approaches are adopted to tackle the problem: (a) a perturbation method via which the nonlinear inertial terms are removed by finding an equivalent term using the linear equation; the system is then put into first-order form and integrated using a Runge-Kutta scheme; (b) a finite difference method based on Houbolt’s scheme, which leads to a set of nonlinear algebraic equations that is solved with a Newton-Raphson approach; (c) the stability boundaries are obtained using an incremental harmonic balance method as proposed by S.L. Lau. Using the three methods, the dynamics of the pipe conveying fluid is investigated in detail. For example, the effects of (i) the forcing frequency, (ii) the perturbation amplitude, and (iii) the flow velocity are considered. Particular attention is paid to the effects of the nonlinear terms. These results are compared with experiments undertaken in our laboratory, utilizing elastomer pipes conveying water. The pulsating component of the flow is generated by a plunger pump, and the motions are monitored by a noncontacting optical follower system. It is shown, both numerically and experimentally, that periodic and quasiperiodic oscillations can exist, depending on the parameters.


2020 ◽  
Vol 26 (19-20) ◽  
pp. 1824-1834
Author(s):  
Beiming Yu ◽  
Hiroshi Yabuno ◽  
Kiyotaka Yamashita

A method of stabilizing the self-excited oscillation of a cantilevered pipe conveying fluid because of non–self-adjointness is proposed theoretically and experimentally. Complex eigenvalues denoting the natural frequency and damping of the system vary with an increase in the flow velocity. When the flow velocity exceeds a critical value, the flow-generated damping becomes negative and the pipe is dynamically destabilized. The complex eigenvalues with respect to flow velocity are affected by boundary conditions. We, thus, propose a stabilization control actuating the boundary condition. The stabilization method is carried out by applying a bending moment proportional to the bottom displacement of the pipe. The effect of the proposed control method is shown by investigating the stability for the three lowest modes of the system depending on the feedback gain. It is theoretically clarified that the critical flow velocity is increased by the proposed control method. Furthermore, experiments are performed using a fluid conveying pipe with two piezoactuators at the downstream end. The piezoactuators apply a bending moment at the downstream end of the pipe according to the theoretically proposed method. Experimental results verify that the proposed stabilization method suppresses the self-excited oscillation.


Author(s):  
J. Rousselet ◽  
G. Herrmann

This paper presents the analysis of a system of articulated pipes hanging vertically under the influence of gravity. The liquid, driven by a slightly fluctuating pressure, circulates through the pipes. Similar systems have been analysed in the past by numerous authors but a common feature of their work is that the behavior of the fluid flow is prescribed, rather than left to be determined by the laws of motion. This leads to a linear formulation of the problem which can not predict the behavior of the system for finite amplitudes of motion. A circumstance in which this behavior is important arises in the stability analysis of the system in the neighbourhood of critical velocities, that is, flow velocities at which the system starts to flutter. Hence, the purpose of the present study was to investigate in greater detail the region close to critical velocities in order to find by how much these critical velocities would be affected by the amplitudes of motion. This led to a set of three coupled-nonlinear equations, one of which represents the motion of the fluid. In the mathematical development, use is made of a scheme which permits the uncoupling of the modes of motion of damped nonconservative dynamic systems. Results are presented showing the importance of the nonlinearities considered.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Theddeus T Akano ◽  
Olumuyiwa S Asaolu

This paper employs artificial intelligence in predicting the stability of pipes conveying fluid. Field data was collected for different pipe structures and usage. Adaptive Neuro-Fuzzy Inference System (ANFIS) model is implemented to predict the stability of the pipe using the fundamental natural frequency at different flow velocities as the index of stability. Results reveal that the neuro-fuzzy model compares relatively well with the conventional finite element method. It was also established that a pipe conveying fluid is most stable when the pipe is clamped at both ends but least stable when it is a cantilever.


Sign in / Sign up

Export Citation Format

Share Document