CALIBRATION OF THE 3-PRS PARALLEL MANIPULATOR USING A MOTION CAPTURE SYSTEM

2005 ◽  
Vol 29 (4) ◽  
pp. 645-654
Author(s):  
C.G. van Driel ◽  
Juan A. Carretero

In this paper, a kinematic calibration method for the 3-PRS parallel manipulator using a motion capture system is presented. Although parallel mechanisms present numerous advantages over their serial counterparts, an accurate kinematic model must be developed to facilitate their operation. Kinematic calibration is used to accurately determine the kinematic parameters of the kinematic model to improve the overall accuracy of the mechanism. The kinematic calibration of the 3-PRS parallel manipulator will be examined by identification of the manipulator's kinematic parameters, an introduction to the motion capture system used, and the presentation of die calibration method itself. For preliminary testing purposes, a virtual model of the manipulator has been generated in CAD to validate the calibration method. The calibration method initially determines the joint locations and orientations, from which the remaining kinematic parameters can be resolved. Preliminary testing using the virtual model indicates the method is valid and can accurately determine the modelled parameters. Once the physical manipulator is operational, alterations the calibration method will be required to account for manufacturing and assembly tolerances/errors, joint offsets and noise during the static captures.

Author(s):  
Jiangzhen Guo ◽  
Dan Wang ◽  
Rui Fan ◽  
Wuyi Chen ◽  
Guohua Zhao

A calibration method of a hexaglide parallel manipulator is presented to improve its accuracy. A prototype of the hexaglide parallel manipulator is first proposed and its kinematics is analyzed. Through differentiating kinematic equations, 54 geometric error parameters are generated to present the pose error of the moving platform, on which an iterative algorithm for the calibration is based. The experiment starts with the data acquisition. All of measuring poses are newly selected based on the orthogonal design, and the deviations in each pose are measured by a laser tracker. Subsequently, 54 actual geometric parameters are identified by least squares method and compensated to the nominal kinematic model, which is assessed by 25 configurations to obtain the accuracy of the calibrated hexaglide parallel manipulator. It is discovered that the pose errors of the calibrated hexaglide parallel manipulator are significantly reduced and illustrate the validity of the calibration method to improve its accuracy. Finally, we discussed the feasibility of implementing this method in high-accuracy calibration of variant-scale parallel mechanisms.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Fengxuan Zhang ◽  
Silu Chen ◽  
Yongyi He ◽  
Guoyun Ye ◽  
Chi Zhang ◽  
...  

This paper proposes a method for kinematic calibration of a 3T1R, 4-degree-of-freedom symmetrical parallel manipulator driven by two pairs of linear actuators. The kinematic model of the individual branched chain is established by using the local product of exponentials formula. Based on this model, the model of the end effector’s pose error is established from a pair of symmetrical branched chains, and a recursive least square method is applied for the parameter identification. By installing built-in sensors at the passive joints, a calibration method for a serial manipulator is eventually extended to this parallel manipulator. Specifically, the sensor installed at the second revolute joint of each branched chain is saved, replaced by numerical calculation according to kinematic constraints. The simulation results validate the effectiveness of the proposed kinematic error modeling and identification methods. The procedure for pre-processing compensation on this 3T1R parallel manipulator is eventually given to improve its absolute positioning accuracy, using the inverse of the calibrated kinematic model.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 837-850
Author(s):  
Genliang Chen ◽  
Lingyu Kong ◽  
Qinchuan Li ◽  
Hao Wang

SummaryKinematic calibration plays an important role in the improvement of positioning accuracy for parallel manipulators. Based on the specific geometric constraints of limbs, this paper presents a new kinematic parameter identification method for the widely studied 3-PRS parallel manipulator. In the proposed calibration method, the planes where the PRS limbs exactly located are identified firstly as the geometric characteristics of the studied parallel manipulator. Then, the limbs can be considered as planar PR mechanisms whose kinematic parameters can be determined conveniently according to the limb planes identified in the first step. The main merit of the proposed calibration method is that the system error model which relates the manipulator’s kinematic errors to the output ones is not required for kinematic parameter identification. Instead, only two simple geometric problems need to be established for identification, which can be solved readily using gradient-based searching algorithms. Hence, another advantage of the proposed method is that parameter identification of the manipulator’s limbs can be accomplished individually without interactive impact on each other. In order to validate the effectiveness and efficiency of the proposed method, calibration experiments are conducted on an apparatus of the studied 3-PRS parallel manipulator. The results show that using the proposed two-step calibration method, the kinematic parameters can be identified quickly by means of gradient searching algorithm (converge within five iterations for both steps). The positioning accuracy of the studied 3-PRS parallel manipulator has been significantly improved by compensation according to the identified parameters. The mean position and orientation errors at the validation configurations have been reduced to 1.56 × 10−4 m and 1.13 × 10−3 rad, respectively. Further, the proposed two-step kinematic calibration method can be extended to other limited-degree-of-freedom parallel manipulators, if proper geometric constraints can be characterized for their kinematic limbs.


2018 ◽  
Vol 38 (2) ◽  
pp. 226-238 ◽  
Author(s):  
Dan Zhao ◽  
Yunbo Bi ◽  
Yinglin Ke

Purpose This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality. Design/methodology/approach A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system. Findings A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors. Practical implications This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy. Originality/value This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.


Author(s):  
Pyeong-Gook Jung ◽  
Sehoon Oh ◽  
Gukchan Lim ◽  
Kyoungchul Kong

Motion capture systems play an important role in health-care and sport-training systems. In particular, there exists a great demand on a mobile motion capture system that enables people to monitor their health condition and to practice sport postures anywhere at any time. The motion capture systems with infrared or vision cameras, however, require a special setting, which hinders their application to a mobile system. In this paper, a mobile three-dimensional motion capture system is developed based on inertial sensors and smart shoes. Sensor signals are measured and processed by a mobile computer; thus, the proposed system enables the analysis and diagnosis of postures during outdoor sports, as well as indoor activities. The measured signals are transformed into quaternion to avoid the Gimbal lock effect. In order to improve the precision of the proposed motion capture system in an open and outdoor space, a frequency-adaptive sensor fusion method and a kinematic model are utilized to construct the whole body motion in real-time. The reference point is continuously updated by smart shoes that measure the ground reaction forces.


Author(s):  
G. Z. Qian ◽  
K. Kazerounian

Abstract In the continuation of a kinematic calibration method developed in a previous report, a new dynamic calibration model for serial robotic manipulators is presented in this paper. This model is based on the Zero Position Analysis Method. It entails the process of estimating the errors in the robot’s dynamic parameters by assuming that the kinematic parameters are free of errors. The convergence and effectiveness of the model are demonstrated through numerical simulations.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1064-1081
Author(s):  
Guang Yu ◽  
Jun Wu ◽  
Liping Wang ◽  
Ying Gao

SUMMARYSpray-painting equipments are important for the automatic spraying of long conical objects such as rocket fairing. This paper proposes a spray-painting equipment that consists of a feed worktable, a gantry frame and two serial–parallel mechanisms and investigates the optimal design of PRR–PRR parallel manipulator in serial–parallel mechanisms. Based on the kinematic model of the parallel manipulator, the conditioning performance, workspace and accuracy performance indices are defined. The dynamic model is derived using virtual work principle and dynamic evaluation index is defined. The conditioning performance, workspace, accuracy performance and dynamic performance are involved in multi-objective optimization design to determine the optimal geometrical parameters of the parallel manipulator. Furthermore, the geometrical parameters of the gantry frame are optimized. An example is given to show how to determine these parameters by taking a long object with conical surface as painted object.


2004 ◽  
Vol 126 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Jay il Jeong ◽  
Dongsoo Kang ◽  
Young Man Cho ◽  
Jongwon Kim

We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms, and illustrate the algorithm with a case study of a planar seven-element 2-degree-of-freedom (DOF) mechanism with three actuators. To calibrate a nonredundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism’s kinematic structure and measurement values. However, the calibration algorithm for a nonredundant case does not apply for a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm for a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1076
Author(s):  
Laisi Cai ◽  
Dongwei Liu ◽  
Ye Ma

Low-cost, portable, and easy-to-use Kinect-based systems achieved great popularity in out-of-the-lab motion analysis. The placement of a Kinect sensor significantly influences the accuracy in measuring kinematic parameters for dynamics tasks. We conducted an experiment to investigate the impact of sensor placement on the accuracy of upper limb kinematics during a typical upper limb functional task, the drinking task. Using a 3D motion capture system as the golden standard, we tested twenty-one Kinect positions with three different distances and seven orientations. Upper limb joint angles, including shoulder flexion/extension, shoulder adduction/abduction, shoulder internal/external rotation, and elbow flexion/extension angles, are calculated via our developed Kinect kinematic model and the UWA kinematic model for both the Kinect-based system and the 3D motion capture system. We extracted the angles at the point of the target achieved (PTA). The mean-absolute-error (MEA) with the standard represents the Kinect-based system’s performance. We conducted a two-way repeated measure ANOVA to explore the impacts of distance and orientation on the MEAs for all upper limb angles. There is a significant main effect for orientation. The main effects for distance and the interaction effects do not reach statistical significance. The post hoc test using LSD test for orientation shows that the effect of orientation is joint-dependent and plane-dependent. For a complex task (e.g., drinking), which involves body occlusions, placing a Kinect sensor right in front of a subject is not a good choice. We suggest that place a Kinect sensor at the contralateral side of a subject with the orientation around 30∘ to 45∘ for upper limb functional tasks. For all kinds of dynamic tasks, we put forward the following recommendations for the placement of a Kinect sensor. First, set an optimal sensor position for capture, making sure that all investigated joints are visible during the whole task. Second, sensor placement should avoid body occlusion at the maximum extension. Third, if an optimal location cannot be achieved in an out-of-the-lab environment, researchers could put the Kinect sensor at an optimal orientation by trading off the factor of distance. Last, for those need to assess functions of both limbs, the users can relocate the sensor and re-evaluate the functions of the other side once they finish evaluating functions of one side of a subject.


Sign in / Sign up

Export Citation Format

Share Document