Kinematic Calibration for Redundantly Actuated Parallel Mechanisms

2004 ◽  
Vol 126 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Jay il Jeong ◽  
Dongsoo Kang ◽  
Young Man Cho ◽  
Jongwon Kim

We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms, and illustrate the algorithm with a case study of a planar seven-element 2-degree-of-freedom (DOF) mechanism with three actuators. To calibrate a nonredundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism’s kinematic structure and measurement values. However, the calibration algorithm for a nonredundant case does not apply for a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm for a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

Author(s):  
Jay il Jeong ◽  
Dongsoo Kang ◽  
Jongwon Kim

We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms. The calibration algorithm for a non-redundant case does not apply for a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose. To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm for a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-degree of freedom (DOF) parallel mechanism with three actuators using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.


2021 ◽  
Author(s):  
Lingyu Kong ◽  
Genliang Chen ◽  
Guanyu Huang ◽  
Sumian Song ◽  
Anhuan Xie ◽  
...  

Abstract Kinematic error model plays an important role in improving the positioning accuracy of robot manipulators by kinematic calibration. The identifiability of kinematic parameters in the error model directly affects the positioning accuracy of the mechanism. And the number of identifiable kinematic parameters determines how many parameters can be accurately identified by kinematic calibration, which is one of the theoretical basis of kinematic error modeling. For serial mechanisms, a consensus has been reached that the maximum number of identifiable kinematic parameters is 4R + 2P + 6, where R and P represent the numbers of revolute and prismatic joints, respectively. Due to complex topologies of parallel mechanisms, there is still no agreement on the formula of the maximum number of identifiable parameters. In this paper, a comprehensive numerical study on the number of identifiable kinematic parameters of parallel mechanisms is conducted. The number of identifiable parameters of 3802 kinds of limbs with different types or actuation arrangements are analyzed. It can be concluded that the maximum number of identifiable kinematic parameters is Σ i = 1 n 4Ri + 2Pi + 6 − Ci − 2(PP)i/3(PPP1)i/(2Ri + 2Pi)(PPP)i, where Ci represents the number of joints whose motion cannot be measured and n denotes the number of limbs in a parallel mechanism; (PP)i, (PPP1)i, and (PPP)i represent two consecutive unmeasurable P joints, three consecutive P joints in which two of them cannot be measured, and three unmeasurable P joints, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ruolong Qi ◽  
Yuangui Tang ◽  
Ke Zhang

A double-positions 4-PPPS parallel mechanism is used for the aircraft fuselage assembly process to improve the docking efficiency and reduce the labor intensity. However, the accuracy is hard to guarantee, for the mechanism is large and redundant and has manufacturing and assembly errors. To improve the accuracy of the 4-PPPS parallel aircraft fuselage docking system, firstly, an averaging iteration method is proposed to calibrate the datum points in the airplane coordinate which are the references of the entire docking system. And secondly, a kinematic calibration method based on the derivative of the spatial pose transformation is proposed to calibrate up to 42 kinematic parameters. By these two methods, the final maximum position error reduced from 2.2 mm to 0.035 mm and the maximum pointing error reduced from 0.08 degree to 0.018 degree. The accuracy measurement and docking experiment prove the efficiency of the proposed methods.


Author(s):  
Shunzhou Huang ◽  
Jue Yu ◽  
Hao Wang ◽  
Yong Zhao ◽  
Xinmin Lai

Stiffness performance is of importance for the use of parallel manipulators in the industrial applications. For this consideration, this paper proposes to realize the desired stiffness properties of parallel mechanism by adding redundantly-actuated limbs. Based on the stiffness mapping models of both the full-DOF and limited-DOF parallel mechanisms, the stiffness variation rules when redundant limbs is introduced into the mechanism are discussed. Moreover, an algorithm for designing the types and configurations of redundant limbs is studied. Two cases are investigated to validate the presented approach. One is about the stiffness decoupling of the Stewart platform, the other is focused on the enhancement of normal stiffness of a Tricept supporting mechanism used in a mirror milling machine designed by us. The result shows that the stiffness performance of Stewart platform can be decoupled when adding six redundantly-actuated limbs that are symmetric with the original active limbs. Besides, the normal stiffness of Tricept mechanism can be enhanced significantly by transforming the passive UP chain to be a redundant actuated chain.


Author(s):  
Hyunpyo Shin ◽  
Sungchul Lee ◽  
Woosung In ◽  
Jay I. Jeong ◽  
Jongwon Kim

We present an optimization procedure that uses the Taguchi method to maximize the mean stiffness and workspace of a redundantly actuated parallel mechanism at the same time. The Taguchi method is used to separate the more influential and controllable variables from the less influential ones among kinematic parameters in workspace analysis and stiffness analysis. In the first stage of optimization, the number of experimental variables is reduced by the response analysis. Quasi-optimal kinematic parameter group is obtained in the second stage of optimization after the response analysis. As a validation of the suggested procedure, the kinematic parameters of a planar 2-DOF parallel manipulator are optimized, which optimization procedure is used to investigate the optimal kinematic parameter groups between the length of the link and the stiffness.


Author(s):  
Sumin Park ◽  
Jongwon Kim ◽  
Giuk Lee

Previous studies on the optimal operation planning of redundantly actuated parallel mechanisms have focused on optimal torque distribution for a predefined trajectory. However, the optimized result obtained for a predefined trajectory cannot guarantee an optimal operation plan, because the torque distribution ability of a redundantly actuated parallel mechanism is highly dependent on the shape of the end-effector trajectory. Therefore, we can expect the redundantly actuated parallel mechanism performance to be enhanced when both the trajectory and torque distribution are optimized during the optimal operation planning stage. We propose a novel redundantly actuated parallel mechanism optimization procedure that can optimize both the end-effector trajectory and torque distribution. The proposed procedure is composed of two stages of optimizers, i.e. upper- and lower-level optimizers that generate the end-effector trajectory and distribute the torques along the generated trajectory, respectively. Composition of these two stages of the optimization procedure allows optimization of both the trajectory and torque distribution, despite the correlation between them. The proposed optimization procedure is simulated using two types of cost functions. All the simulation results show that the proposed procedure facilitates optimization of the end-effector trajectory and the torque distribution concurrently. Also, the cost function value is minimized to a greater extent than in the result with the optimal torque distribution along the initial trajectory.


2005 ◽  
Vol 29 (4) ◽  
pp. 645-654
Author(s):  
C.G. van Driel ◽  
Juan A. Carretero

In this paper, a kinematic calibration method for the 3-PRS parallel manipulator using a motion capture system is presented. Although parallel mechanisms present numerous advantages over their serial counterparts, an accurate kinematic model must be developed to facilitate their operation. Kinematic calibration is used to accurately determine the kinematic parameters of the kinematic model to improve the overall accuracy of the mechanism. The kinematic calibration of the 3-PRS parallel manipulator will be examined by identification of the manipulator's kinematic parameters, an introduction to the motion capture system used, and the presentation of die calibration method itself. For preliminary testing purposes, a virtual model of the manipulator has been generated in CAD to validate the calibration method. The calibration method initially determines the joint locations and orientations, from which the remaining kinematic parameters can be resolved. Preliminary testing using the virtual model indicates the method is valid and can accurately determine the modelled parameters. Once the physical manipulator is operational, alterations the calibration method will be required to account for manufacturing and assembly tolerances/errors, joint offsets and noise during the static captures.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Mats Isaksson ◽  
Matthew Watson

Parallel manipulators possess several advantages compared to serial robots, including the possibilities for high acceleration and high accuracy positioning of the manipulated platform. However, the majority of all proposed parallel mechanisms suffer from the combined drawbacks of a small positional workspace in relation to the manipulator footprint and a limited range of rotations of the manipulated platform. This paper analyses a recently proposed six-degrees-of-freedom parallel mechanism that aims to address both these issues while maintaining the traditional advantages of a parallel mechanism. The investigated manipulator consists of six actuated coaxial upper arms that are allowed to rotate indefinitely around a central cylindrical base column and a manipulated platform where five of the six joint positions are collinear. The axis-symmetric arm system leads to an extensive positional workspace while the proposed link arrangement increases the range of achievable platform rotations. The manipulator workspace is analyzed in detail and two methods to further increase the rotational workspace are presented. It is shown that the proposed manipulator has the possibility of a nonsingular transition of assembly modes, which extends the usable workspace. Furthermore, it is demonstrated how an additional kinematic chain can be utilized to achieve infinite platform rotation around one platform axis. By introducing additional mobility in the manipulated platform, a redundantly actuated mechanism is avoided.


Robotica ◽  
1996 ◽  
Vol 14 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Koichiro Okamura ◽  
F.C. Park

SUMMARYWe present a method for kinematic calibration of open chain mechanisms based on the product of exponentials (POE) formula. The POE formula represents the forward kinematics of an open chain as a product of matrix exponentials, and is based on a modern geometric interpretation of classical screw theory. Unlike the kinematic representations based on the Denavit- Hartenberg (D-H) parameters, the kinematic parameters in the POE formula vary smoothly with changes in the joint axes, ad hoc methods designed to address the inherent singularities in the D-H parameters are therefore unnecessary. Another important advantage is that simple closed-form expressions can be obtained for the derivatives of the forward kinematic equations with respect to the kinematic parameters. After introducing the POE formula, we derive a least-squares kinematic calibration algorithm for general open chain mechanisms. Simulation results with a 6-axis open chain are presented.


Sign in / Sign up

Export Citation Format

Share Document