DIFFERENTIAL EVOLUTION FOR OPTIMIZATION OF PID GAIN IN ELECTRICAL DISCHARGE MACHINING CONTROL SYSTEM

2013 ◽  
Vol 37 (3) ◽  
pp. 293-301 ◽  
Author(s):  
Trias Andromeda ◽  
Azli Yahya ◽  
Syahrullail Samion ◽  
Ameruddin Baharom ◽  
Nor Liyana Hashim

PID controller of servo control system maintains the gap between Electrode and workpiece in Electrical Discharge Machining (EDM). Capability of the controller is significant since machining process is a stochastic phenomenon and physical behaviour of the discharge is unpredictable. Therefore, a Proportional Integral Derivative (PID) controller using Differential Evolution (DE) algorithm is designed and applied to an EDM servo actuator system in order to find suitable gain parameters. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID gain to maintain the electrode position.

2013 ◽  
Vol 284-287 ◽  
pp. 2266-2270 ◽  
Author(s):  
Andromeda Trias ◽  
Azli Yahya ◽  
Samion Syahrullail ◽  
Ameruddin Baharom ◽  
Safura Hashim Nor Liyana

Maintaining gap between Electrode and workpiece in Electrical Discharge Machining (EDM) is very important since the capability of control system to keep the gap will improve the performance of this machine. Therefore to maintain the gap, a Proportional Integral Derivative (PID) controller is designed and applied to EDM servo actuator system. The objective of this work is to obtain a stable, robust and controlled system by tuning the PID controller using Differential Evolution (DE) algorithm. The controller for EDM die sinking is verified by simulation of the control system using MATLAB/Simulink program. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID parameters controller to control the electrode position.


2014 ◽  
Vol 661 ◽  
pp. 176-182
Author(s):  
Elnaz Karimpour ◽  
Azli Yahya ◽  
Sophan Wahyudi ◽  
Andromeda Trias ◽  
Muhammad Arif Abdul Rahim

Electrical discharge machining (EDM) is a nonconventional milling in which holes or shape can be created without any contact between electrode and work piece during the material removal process. Throughout the machining process a series of stochastic sparks are produced when the gap between electrode and work piece is very narrow just about 10 to 50 microns. Controlling this gap in micro dimension not only depends on electrode position but also on work piece surface. So a combination of PID controller and EDM process is used to monitor the gap. In this study an indirect measurement of surface position is carried out by implementing voltage average gap model. And Simulink models have been done to simulate the dynamic behavior of EDM system.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2014 ◽  
Vol 926-930 ◽  
pp. 1497-1500
Author(s):  
Xu Yang Chu ◽  
Gang Liu ◽  
Chun Mei Wang ◽  
Kai Zhu ◽  
Da Yun Chen ◽  
...  

This paper describe the principles of Servo Control System of Electrical Discharge Machining Based on PMAC .To meet the requirements of processing and Put forward based on PMAC servo control system. This control system combines hardware resource with PMAC real-time control function. Elaborate human-computer interface developing process.


Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Yury Melnik ◽  
Mikhail Kozochkin ◽  
Artur Porvatov ◽  
Anna Okunkova

The article is related to the research of the parameters of vibroacoustic emission for development of the monitoring and adaptive control system for electrical discharge machining. The classical control system based on a response of electrical parameters does not give an adequate data in the cases of a new class of materials processing as conductive ceramics reinforced by conductive nano additives and carbon nanotubes and whiskers. The idle pulses, which are working on the destruction of the erosion products in the gap, count as working pulses. The application of the monitoring and control tools based on vibroacoustic emission gives adequate data about conditions in the working zone. The developed system is available to count only impulses involved in working on the destruction of the workpiece. The experiments were conducted on the samples of materials with a low melting point as austenitic steel and aluminum alloy, and hard alloys. The records of vibroacoustic signals were analyzed for detection of the monitoring and adaptive control criteria.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


Sign in / Sign up

Export Citation Format

Share Document