A computational study of a cyano-bridged dinuclear ruthenium complex containing the non-innocent methylpyrazinium ligand

2004 ◽  
Vol 82 (6) ◽  
pp. 1102-1111 ◽  
Author(s):  
A BP Lever

The properties of a series of complexes trans-[LRu(NH3)4-NC-Ru(NH3)4(methylpyrazinium)]n+ where L is an anion (Cl–, F–, CN–, OH–) or neutral ligand (CO, H2O, pyridine, CH3NO2) were analyzed using density functional theory. The objective was to probe the change in electronic coupling between the two ruthenium atoms and between ruthenium and the non-innocent methylpyrazinium ligand as L is varied. Molecular orbital coefficients and optical spectra were derived. The electronic interactions involved are seen to be quite sensitive to the charge on the ruthenium to which the ligand L is attached as L is varied. Exchange (K) and Coulomb (J) energies are also calculated, using the INDO/S model, for the various metal-to-ligand charge-transfer transitions. K correlates well with the energy and intensity of the transitions and specifically with the variation in delocalization induced by variation of L.Key words: DFT, ruthenium, non-innocent ligand, methylpyrazinium, ZINDO.

2001 ◽  
Vol 66 (2) ◽  
pp. 276-290 ◽  
Author(s):  
Maurizio Carano ◽  
Paola Ceroni ◽  
Michele Maggini ◽  
Massimo Marcaccio ◽  
Enzo Menna ◽  
...  

Two dyads consisting of a mononuclear or a dinuclear ruthenium complex covalently linked to a fullerenopyrrolidine through a rigid androstane spacer, have been prepared through azomethine ylide cycloaddition to C60. Electrochemical and photophysical studies revealed that ground-state electronic interactions between the dinuclear ruthenium chromophore and the fullerenopyrrolidine moiety are small. The redox series observed for the dyads correspond to the superimposition of the reduction patterns of the fullerene core and of the Ru(II)-bipyridine moieties. The results of the electrochemical investigation allow us to rationalize the photophysical behaviour of the two species by identifying the thermodynamically allowed and forbidden routes for the deactivation of the Ru-based metal-to-ligand charge transfer (MLCT) excited state.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1947
Author(s):  
Delano P. Chong

After geometry optimization, the electron spectra of indole and four azaindoles are calculated by density functional theory. Available experimental photoemission and excitation data for indole and 7-azaindole are used to compare with the theoretical values. The results for the other azaindoles are presented as predictions to help the interpretation of experimental spectra when they become available.


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18246-18251
Author(s):  
Selçuk Eşsiz

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
Karolina Zawadzińska ◽  
Karolina Kula

The regiochemistry of [3+2] cycloaddition (32CA) processes between benzonitrile N-oxide 1 and β-phosphorylated analogues of nitroethenes 2a–c has been studied using the Density Functional Theory (DFT) at the M062X/6-31+G(d) theory level. The obtained results of reactivity indices show that benzonitrile N-oxide 1 can be classified both as a moderate electrophile and moderate nucleophile, while β-phosphorylated analogues of nitroethenes 2a–c can be classified as strong electrophiles and marginal nucleophiles. Moreover, the analysis of CDFT shows that for [3+2] cycloadditions with the participation of β-phosphorylatednitroethene 2a and β-phosphorylated α-cyanonitroethene 2b, the more favored reaction path forms 4-nitro-substituted Δ2-isoxazolines 3a–b, while for a reaction with β-phosphorylated β-cyanonitroethene 2c, the more favored path forms 5-nitro-substituted Δ2-isoxazoline 4c. This is due to the presence of a cyano group in the alkene. The CDFT study correlates well with the analysis of the kinetic description of the considered reaction channels. Moreover, DFT calculations have proven the clearly polar nature of all analyzed [3+2] cycloaddition reactions according to the polar one-step mechanism.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 704-713
Author(s):  
Younas Aouine ◽  
Aaziz Jmiai ◽  
Anouar Alami ◽  
Abdallah El Asri ◽  
Souad El Issami ◽  
...  

The N-alkylation reaction of N-benzoyl 5-(aminomethyl)tetrazole (5-AMT) with benzyl bromide was carried out in the presence of K2CO3 as a base. Two separable regioisomers were obtained, thus their purification led to determine the proportion of each of them, and their structures were attributed essentially based on 1H and 13C NMR spectroscopy in addition to the elemental analysis and MS data. In order to confirm the results obtained at the synthesis level, a computational study was carried out by application of density functional theory (DFT) using the Becke three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP).


2014 ◽  
Vol 92 (10) ◽  
pp. 979-986 ◽  
Author(s):  
Megumi Kayanuma ◽  
Chantal Daniel ◽  
Etienne Gindensperger

The absorption spectra of 11 rhenium(I) complexes with photoisomerizable stilbene-like ligands have been investigated by means of density functional theory (DFT). The electronic structures of the ground and excited states were determined for [Re(CO)3(N,N)(L)]+ (N,N = bpy (2,2′-bipyridine), phen (1,10-phenanthroline), Me4phen (3,4,7,8-tetramethyl-1,10-phenanthroline), ph2phen (4,7-diphenyl-1,10-phenanthroline), or Clphen (5-chloro-1,10-phenanthroline); L = bpe (1,2-bis(4-pyrydil)ethylene), stpy (4-styrylpyridine), or CNstpy (4-(4-cyano)styrylpyridine)) at the time–dependent (TD) DFT/CAM-B3LYP level of theory in vacuum and acetonitrile to highlight the effects of both antenna N,N and isomerizable L ligands. The TD-DFT spectra of two representative complexes, namely [Re(CO)3(bpy)(stpy)]+ and [Re(CO)3(phen)(bpe)]+, have been compared with MS-CASPT2 spectra. The TD-DFT spectra obtained in vacuum and acetonitrile agree rather well both with the ab initio and experimental spectra. The absorption spectroscopy of this series of molecules is characterized by the presence of three low-lying metal to ligand charge transfer (MLCT) states absorbing in the visible energy domain. The nature of the isomerizable ligands (bpe, stpy, or CNstpy) and the type of antenna ligands (bpy, phen, and substituted phen) control the degree of mixing between the MLCT and intraligand excited states, their relative energies, as well as their intensities.


2021 ◽  
Author(s):  
Igor Kowalec ◽  
Lara Kabalan ◽  
Richard Catlow ◽  
Andrew Logsdail

<p>We investigate the mechanism of direct CO<sub>2</sub> hydrogenation to methanol on Pd (111), (100) and (110) surfaces using density functional theory (DFT), providing insight into the reactivity of CO<sub>2</sub> on Pd-based catalysts. The initial chemisorption of CO<sub>2</sub>, forming a partially charged CO<sub>2</sub><sup>δ-</sup>, is weakly endothermic on a Pd (111) surface, with an adsorption energy of 0.06 eV, and slightly exothermic on Pd (100) and (110) surfaces, with adsorption energies of -0.13 and -0.23 eV, respectively. Based on Mulliken analysis, we attribute the low stability of CO<sub>2</sub><sup>δ-</sup><sub> </sub>on the Pd (111) surface to a negative charge that accumulates on the surface Pd atoms interacting directly with the CO<sub>2</sub><sup>δ-</sup><sub> </sub>adsorbate. For the reaction of the adsorbed species on the Pd surface, HCOOH hydrogenation to H<sub>2</sub>COOH is predicted to be the rate determining step of the conversion to methanol in all cases, with activation barriers of 1.35, 1.26, and 0.92 eV on Pd (111), (100) and (110) surfaces, respectively.<br></p>


2019 ◽  
Vol 12 (1) ◽  
pp. 70-81
Author(s):  
Denisa Cagardová ◽  
Vladimír Lukeš ◽  
Ján Matúška ◽  
Peter Poliak

Abstract A computational study using density functional theory is reported for selected model aza[n]circulenes (n = 6, 7, 8 and 9) and their derivatives consisting of pyrrole and benzene units. Local aromaticity of central rings was discussed and analyzed using theoretical structural indices. Depending on their molecular structures, energies of the highest occupied and lowest unoccupied molecular orbitals change from –5.23 eV to –4.08 eV and from –1.97 eV to –0.41 eV, respectively. Based on B3LYP calculated optimal geometries, electronic structure of molecules and their charge transport properties resulted in the suggestion of three planar molecules containing three or four pyrrole units as potential candidates for p-type semiconductors. Hole drift mobilities for ideal stacked dimers of these potential semiconductors were calculated and they range from 0.94 cm2·V−1·s−1 to 7.33 cm2·V−1·s−1.


Sign in / Sign up

Export Citation Format

Share Document