THE VAPOR-PHASE PHOTOLYSIS OF ACETIC ACID

1955 ◽  
Vol 33 (10) ◽  
pp. 1530-1535 ◽  
Author(s):  
P. Ausloos ◽  
E. W. R. Steacie

The photolysis of acetic acid (CH3COOD) vapor has been investigated in the temperature range from room temperature to 285 °C. Since CH3D formation is independent of temperature, it is certain that the primary process[Formula: see text]occurs to the extent of about 10%. The results are complex and suggest that three other primary processes may occur, viz.[Formula: see text]The abstraction reaction[Formula: see text]is of importance, and the results indicate that it has an activation energy of 10.2 kcal., and a steric factor of the order of 10−3.


1955 ◽  
Vol 33 (3) ◽  
pp. 496-506 ◽  
Author(s):  
G. R. Hoey ◽  
K. O. Kutschke

The photo-oxidation of azomethane has been studied at low oxygen pressures (0.02 to 1 mm.) in the temperature range ca. 25 °C. to 161 °C. The primary process in the normal photolysis of azomethane is essentially unaffected by the presence of oxygen. Carbon monoxide is probably a secondary product of the oxidation of methyl radicals. Carbon dioxide formation is quite small, and therefore neither methyl radicals nor CH3N=N—CH2 radicals are oxidized appreciably to carbon dioxide. Nitrous oxide, which is a major product of the oxidation, is most likely formed from the oxidation of CH3N=NCH2 radicals. The suggested mechanism of N2O formation is:[Formula: see text] The reaction of methyl radicals with oxygen was found to proceed with a negligible activation energy and a steric factor of the order of 10−2. Evidence for the occurrence of the reactions[Formula: see text]at room temperature was obtained.



2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.



1969 ◽  
Vol 47 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Koichiro Sakota ◽  
Yoshio Kamiya ◽  
Nobuto Ohta

A detailed kinetic study of oxidation of toluene and its derivatives by cobaltic acetate in 95 vol% acetic acid is reported. The reaction was found to be profoundly affected by a steric factor and rather insensitive to the C—H bond energy. The order of reactivities of various alkylbenzenes is quite reversal to that of hydrogen abstraction reactions. The reaction was of first-order with respect to toluene, of second-order with respect to cobaltic ion and of inverse first-order with respect to cobaltous ion. The oxidation by cobaltic ion seems to proceed via an initial reversible electron transfer from toluene to cobaltic ion, yielding [Formula: see text] which is oxidized into benzyl acetate by another cobaltic ion. The apparent activation energy for toluene was found to be 25.3 kcal mole−1, and the same activation energy was found for ethylbenzene, cumene, diphenylmethane, and triphenylmethane.



1957 ◽  
Vol 35 (7) ◽  
pp. 588-594 ◽  
Author(s):  
J. A. Pinder ◽  
D. J. Le Roy

The addition of ethyl radicals to ethylene has been studied in the temperature range 58° to 123 °C. The radicals were produced by the mercury photosensitized decomposition of hydrogen in the presence of ethylene, and the rate of the addition reaction was measured in terms of the rate of formation of n-hexane by the combination of ethyl and butyl radicals. Corrections were made for the non-uniformity of radical concentrations in the reaction zone. Assuming a negligible activation energy for the combination of two ethyl radicals, the activation energy for the addition reaction is 5.5 kcal. per mole; the steric factor, relative to the square root of the steric factor for ethyl radical combination, is 5.0 × 10−5.



1953 ◽  
Vol 31 (4) ◽  
pp. 377-384 ◽  
Author(s):  
R. W. Durham ◽  
E. W. R. Steacie

Azoisopropane has been photolyzed by 3600 Å radiation over the temperature range 30–120 °C. The effect of pressure indicates an excited molecule mechanism. Excited molecules which decompose give nitrogen and isopropyl radicals; the latter either combine, disproportionate, or react with azoisopropane. The activation energy difference between the two reactions[Formula: see text]has been found to be 6.5 ± 0.5 kcal. per mole.The difference in activation energy between the disproportionation and combination reactions is rendered ambiguous by the possibility of C3H7.N:N existing at the lower temperatures; but this is certainly small. The ratio of the rates of the two reactions is 0.5 at room temperature.



1955 ◽  
Vol 33 (4) ◽  
pp. 580-588 ◽  
Author(s):  
G. R. Hoey ◽  
D. J. Le Roy

The reactions initiated in hydrogen–propylene mixtures by Hg(3P1) atoms were studied over the temperature range from room temperature to 320 °C. At 260° and above, the rate of formation of propane and the rate of pressure decrease are linear functions of the hydrogen pressure. This effect is attributed to the reaction C3H7+H2 = C3H8+H and its activation energy is estimated to be equal to or slightly greater than 12.5 kcal. per mole. This is 1.2 kcal. per mole greater than the corrected value for the activation energy of the analogous reaction C2H5+H2 = C2H6+H. The ratio kcombination/kdispropotionation is estimated to be approximately 2.0 at room temperature in the case of isopropyl radicals.



1949 ◽  
Vol 27b (8) ◽  
pp. 732-737
Author(s):  
C. A. Winkler ◽  
J. H. Greenblatt

Rate constants for the reaction between nitrogen atoms and ethylene have been obtained by diffusion flame technique over the temperature range 273° to 373 °C. An activation energy of about 3 kcal. has been obtained from the temperature coefficient of these rate constants, and using this value a steric factor of 10−2 has been calculated.



1959 ◽  
Vol 37 (4) ◽  
pp. 672-678 ◽  
Author(s):  
S. Toby ◽  
K. O. Kutschke

Azomethane was photolyzed in the presence of up to 30 mole per cent formaldehyde and formaldehyde-d2 at temperatures from 80 °C to 180 °C. The value of the activation energy for the abstraction reaction with methyl radicals was found to be 6.2 kcal mole−1 for CH2O and 7.9 kcal mole−1 for CD2O. The results indicated that the formyl radical was stable over the temperature range studied.



1956 ◽  
Vol 34 (6) ◽  
pp. 775-784 ◽  
Author(s):  
R. J. Cvetanović

Reaction of oxygen atoms, produced by mercury photosensitized decomposition of nitrous oxide, with acetaldehyde has been studied at room temperature. The major products of the reaction are water and biacetyl and the only primary process appears to be[Formula: see text]followed by[Formula: see text]and[Formula: see text]At room temperature oxygen atoms react with acetaldehyde 0.7 ± 0.1 times as fast as with ethylene, so that the activation energy of reaction [1] is likely to be close to 3 kcal./mole.



1997 ◽  
Vol 473 ◽  
Author(s):  
A. J. Kalkman ◽  
A. H. Verbruggen ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

ABSTRACTThe time-dependence of the growth of Al2Cu precipitates in Al-Cu(lat% Cu) thin films is studied by means of resistance measurements at different temperatures. The samples are annealed at 400°C for 1 hour, and then quickly cooled down to room temperature. Afterwards, the samples are heated within one minute to a measurement temperature between 140 °C and 240 °C. Growth of precipitates causes a well defined decrease in resistance. The observed resistance decrease does not follow an exponential decay. In the investigated temperature range the resistance decrease can be accurately modelled by (R(t)-R∞) = (Ro-R∞)exp(-(t /τ)n), with the time constant τ= τ0 exp(Ea / kT). Excellent fits were obtained resulting in n = 0.66±0.05, independent of temperature, and Ea= 0.81±0.03 eV. This value for the activation energy agrees very well with the activation energy that has been reported in literature for both electromigration failure in Al-Cu and grain-boundary diffusion of Cu in Al. The value we found for n is intriguingly close to 2/3 and deviates strongly from the values of n reported for bulk Al-Cu (n = 1.5–1.8) in the same temperature range.



Sign in / Sign up

Export Citation Format

Share Document