Kinetics of Cu Segregation in Al-Cu(1at% Cu) Interconnects Studied by Resistance Measurements

1997 ◽  
Vol 473 ◽  
Author(s):  
A. J. Kalkman ◽  
A. H. Verbruggen ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

ABSTRACTThe time-dependence of the growth of Al2Cu precipitates in Al-Cu(lat% Cu) thin films is studied by means of resistance measurements at different temperatures. The samples are annealed at 400°C for 1 hour, and then quickly cooled down to room temperature. Afterwards, the samples are heated within one minute to a measurement temperature between 140 °C and 240 °C. Growth of precipitates causes a well defined decrease in resistance. The observed resistance decrease does not follow an exponential decay. In the investigated temperature range the resistance decrease can be accurately modelled by (R(t)-R∞) = (Ro-R∞)exp(-(t /τ)n), with the time constant τ= τ0 exp(Ea / kT). Excellent fits were obtained resulting in n = 0.66±0.05, independent of temperature, and Ea= 0.81±0.03 eV. This value for the activation energy agrees very well with the activation energy that has been reported in literature for both electromigration failure in Al-Cu and grain-boundary diffusion of Cu in Al. The value we found for n is intriguingly close to 2/3 and deviates strongly from the values of n reported for bulk Al-Cu (n = 1.5–1.8) in the same temperature range.

2019 ◽  
Vol 66 (5) ◽  
pp. 638-643
Author(s):  
Jinsong Luo ◽  
Ligong Zhang ◽  
Haigui Yang ◽  
Nan Zhang ◽  
Yongfu Zhu ◽  
...  

Purpose This paper aims to study the oxidation kinetics of the nanocrystalline Al ultrathin films. The influence of structure and composition evolution during thermal oxidation will be observed. The reason for the change in the oxidation activation energy on increasing the oxidation temperature will be discussed. Design/methodology/approach Al thin films are deposited on the silicon wafers as substrates by vacuumed thermal evaporation under the base pressure of 2 × 10−4 Pa, where the substrates are not heated. A crystalline quartz sensor is used to monitor the film thickness. The film thickness varies in the range from 30 to 100 nm. To keep the silicon substrate from oxidation during thermal oxidation of the Al film, a 50-nm gold film was deposited on the back side of silicon substrate. Isothermal oxidation studies of the Al film were carried out in air to assess the oxidation kinetics at 400-600°C. Findings The activation energy is positive and low for the low temperature oxidation, but it becomes apparently negative at higher temperatures. The oxide grains are nano-sized, and γ-Al2O3 crystals are formed at above 500°C. In light of the model by Davies, the grain boundary diffusion is believed to be the reason for the logarithmic oxidation rate rule. The negative activation energy at higher temperatures is apparent, which comes from the decline of diffusion paths due to the formation of the γ-Al2O3 crystals. Originality/value It is found that the oxidation kinetics of nanocrystalline Al thin films in air at 400-600°C follows the logarithmic law, and this logarithmic oxidation rate law is related to the grain boundary diffusion. The negative activation energies in the higher temperature range can be attributed to the formation of γ-Al2O3 crystal.


1977 ◽  
Vol 31 (3) ◽  
pp. 210-213 ◽  
Author(s):  
W. E. Swartz ◽  
D. M. Holloway

Auger electron spectroscopy has been employed to study the diffusion of sulfur and carbon in α-iron. In the temperature range 25 to 500°C carbon preferentially segregates to the surface. From 400 to 700°C sulfur segregates to the surface while carbon is thermally desorbed. An Arrhenius analysis of the sulfur diffusion data yields an activation energy of 14.5 kcal/mol, which is consistent with a grain boundary diffusion process. The kinetics of carbon migration is complicated by the thermal desorption which makes Arrhenius analysis impossible.


1993 ◽  
Vol 313 ◽  
Author(s):  
John G. Holl-Pellerin ◽  
S.G.H. Anderson ◽  
P.S. Ho ◽  
K.R. Coffey ◽  
J.K. Howard ◽  
...  

ABSTRACTX-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Cu and Cr through 1000 Å thick Co films in the temperature range of 325°C to 400°C. Grain boundary diffusivities were determined by modeling the accumulation of Cu or Cr on Co surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Cu through Co is characterized by a diffusion coefficient, D0gb, of 2 × 104 cm2/sec and an activation energy, Ea,gb, of 2.4 eV. Similarly, Cr grain boundary diffusion through Co thin films occurs with a diffusion coefficient, Do,gb, of 6 × 10-2cm2/sec and an activation energy, Ea,gb of 1.8 eV. The Co film microstructure has been investigated before and after annealing by x-ray diffraction and transmission electron Microscopy. Extensive grain growth and texturing of the film occurred during annealing for Co deposited on a Cu underlayer. In contrast, the microstructure of Co deposited on a Cr underlayer remained relatively unchanged upon annealing. Magnetometer Measurements have shown that increased in-plane coercivity Hc, reduced remanence squareness S, and reduced coercive squareness S* result from grain boundary diffusion of Cu and Cr into the Co films.


2007 ◽  
Vol 266 ◽  
pp. 13-28 ◽  
Author(s):  
Alan F. Jankowski

Thermal anneal treatments are used to identify the temperature range of the two dominant diffusion mechanisms – bulk and grain boundary. To assess the transition between mechanisms, the low temperature range for bulk diffusion is established utilizing the decay of static concentration waves in composition-modulated nanolaminates. These multilayered structures are synthesized using vapor deposition methods as thermal evaporation and magnetron sputtering. However, at low temperature the kinetics of grain-boundary diffusion are much faster than bulk diffusion. The synthesis of Au-Cu alloys (0-20 wt.% Cu) with grain sizes as small as 5 nm is accomplished using pulsed electro-deposition. Since the nanocrystalline grain structure is thermally unstable, these structures are ideal for measuring the kinetics of grain boundary diffusion as measured by coarsening of grain size with low temperature anneal treatments. A transition in the dominant mechanism for grain growth from grain boundary to bulk diffusion is found with an increase in temperature. The activation energy for bulk diffusion is found to be 1.8 eV·atom-1 whereas that for grain growth at low temperatures is only 0.2 eV·atom-1. The temperature for transitioning from the dominant mechanism of grain boundary to bulk diffusion is found to be 57% of the alloy melt temperature and is dependent on composition.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xu Han ◽  
Xiaoyan Li ◽  
Peng Yao

Purpose This study aims to investigate the effect of ultrasound on interfacial microstructures and growth kinetics of intermetallic compounds (IMCs) at different temperatures. Design/methodology/approach To investigate the effect of ultrasound on IMCs growth quantitatively, the cross-sectional area of IMCs layers over a confirmed length was obtained for calculating the thickness of the IMCs layer. Findings The generation of dimensional difference in normal direction between Cu6Sn5 and its adjacent Cu6Sn5, formation of bossed Cu6Sn5 and non-interfacial Cu6Sn5 in ultrasonic solder joints made the interfacial Cu6Sn5 layer present a non-scallop-like morphology different from that of traditional solder joints. At 260°C and 290°C, the Cu3Sn layer presented a wave-like shape. In contrast, at 320°C, the Cu3Sn in ultrasonic solder joints consisted of non-interfacial Cu3Sn and interfacial Cu3Sn with a branch-like shape. The Cu6Sn5/Cu3Sn boundary and Cu3Sn/Cu interface presented a sawtooth-like shape under the effect of ultrasound. The predominant mechanism of ultrasonic-assisted growth of Cu6Sn5 growth at 260°C, 290°C and 320°C involved the grain boundary diffusion accompanied by grain coarsening. The Cu3Sn growth was controlled by volume diffusion during the ultrasonic soldering process at 260°C and 290°C. The diffusion mechanism of Cu3Sn growth transformed to grain boundary diffusion accompanied by grain coarsening when the ultrasonic soldering temperature was increased to 320°C. Originality/value The microstructural evolution and growth kinetics of IMCs in ultrasonically prepared ultrasonic solder joints at different temperatures have rarely been reported in previous studies. In this study, the effect of ultrasound on microstructural evolution and growth kinetics of IMCs was systematically investigated.


1993 ◽  
Vol 309 ◽  
Author(s):  
D. R. Frear ◽  
J. R. Michael ◽  
A. D. Romig

AbstractThe microstructural evolution of unpatterned Al-2wt.%Cu thin films has been examined to elucidate the mechanism by which copper improves electromigration resistance. After annealing at 425°C and cooling to room temperature at a rate of approximately 1°C/min., the microstructure of the Al-Cu films consisted of 1 μm aluminum grains with θ-phase Al2Cu precipitates at grain boundaries and triple points. The grain size and precipitation distribution did not change with subsequent isothermal heat treatments in the temperature range of 200° to 400°C. Al-Cu thin films annealed at 400°C, a temperature just below the Al/Al+θ solvus, exhibited microstructures in which the aluminum grain boundaries were depleted in copper except for the presence of the pre-existing large, widely dispersed AI2Cu precipitates. Al-Cu thin films annealed at 200° to 300°C were enriched with copper at the aluminum grain boundaries. The large, widely dispersed Al2Cu precipitates remained after the lower temperature anneals. From these results, it is proposed that the presence of copper in aluminum thin films improves electromigration resistance due to the precipitation of a thin film of Al2Cu, or a substoichiometric precursor, along the grain boundaries. The grain boundary phase retards grain boundary diffusion in the thin films, thereby reducing total mass transport and improving electromigration resistance.


2012 ◽  
Vol 323-325 ◽  
pp. 171-176 ◽  
Author(s):  
D. Prokoshkina ◽  
A.O. Rodin ◽  
V. Esin

The temperature dependence of the bulk diffusion coefficient of Fe in Cu is determined by EDX in the temperature range from 923 to 1273 K, , m2/s. These results are different from that obtained earlier by radiotracer technique: activation energy is less by 30 kJ/mol and pre-exponential factor is 50 times smaller. Deviations from ideality of investigated solutions do not explain the differences; consequently, the thermodynamical factor would not responsible for such an effect. Fast grain boundary diffusion of Fe in Cu was not observed in the temperature range from 823 to 1073 K.


1992 ◽  
Vol 7 (6) ◽  
pp. 1377-1386 ◽  
Author(s):  
Rita Roy ◽  
S.K. Sen ◽  
Suchitra Sen

The kinetics of the formation of intermetallics in the Cu–In bimetallic thin film couple have been studied from room temperature to 432 K by measuring the evolution of composite and contact electrical resistance with time and temperature. The resistivity measurements have been supplemented by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Copper reacts with indium even at room temperature to form CuIn intermetallic and assuming a model of defect assisted diffusion into the grains, the activation energy averaged over five different samples is found to be 0.40 eV. The grain boundary diffusion is found to occur with an average activation energy of 0.55 eV. XRD confirms the growth of CuIn intermetallic and on annealing at higher temperature, for copper-rich films copper further reacts with CuIn to form Cu9In4. Further evidences of solid state reactions and grain boundary diffusion through Cu grain boundaries have been obtained from SEM study. TEM indicates the growth of the grain size on annealing and confirms the presence of the CuIn phase.


The kinetics of the reaction O 2 ( 1 ∆ g ) + O 3 k 2 → 2O 2 + O have been investigated in the temperature range 195 to 439 K by using the kinetic photo­ionization technique to follow [O 2 ( 1 ∆ g )]. In Arrhenius form, the rate constant, k 2 ,'is given by k 2 = 4.0 ± 1.5 x 10 8 exp (13000 /RT) 1 mol -1 s -1 (joule units) ( = 4.0 ± 1.5 x 10 8 exp (3100/RT) 1 mol -1 s -1 (calorie units)). At room temperature (292 K) k 2 = 2.1 ± 0.3 x 10 6 1 mol -1 s -1 . The activation energy of 13 ± 1.6 kJ mol -1 suggests that there is virtually no barrier to the reaction other than that provided by its endothermicity (12.1 kJ mol -1 ). The results are used to derive, from pre­viously published data, a value of the rate constant for the reaction O + O 3 k 3 → 2O 2 of 4 ± 2 x 10 6 1 mol -1 s -1 at room temperature.


Sign in / Sign up

Export Citation Format

Share Document