PHOTOCHEMICAL SEPARATION OF MERCURY ISOTOPES: IV. THE REACTION OF Hg2026(3P1) ATOMS, PHOTOEXCITED IN NATURAL MERCURY VAPOR, WITH METHYL CHLORIDE AND ISOPROPYL CHLORIDE

1959 ◽  
Vol 37 (8) ◽  
pp. 1315-1327 ◽  
Author(s):  
K. R. Osborn ◽  
H. E. Gunning

A detailed investigation has been made of the reaction of Hg2026(3P1) atoms, photoexcited in natural mercury vapor (HgN), with methyl chloride, at room temperature. Data are also reported on the reaction with isopropyl chloride as substrate. Hg202 enrichment in the calomel product is taken as evidence of its formation in the primary quenching reaction.Under static conditions the methyl chloride reaction was found to form calomel with the natural Hg202 abundance (29.8%). With increasing flow rate a progressive increase in Hg202 abundance was observed. Maximum enrichments were found at fast flow rates, low substrate pressures, and high values for the absorbed light intensity (IA). The most highly enriched calomel obtained in this study contained 50.4% Hg202. With increasing IA, a corresponding increase in flow rate was required to achieve maximum Hg202 enrichment. The addition of propylene or butene-1 to the methyl chloride stream was found to result in a slight decrease in Hg202 abundance over that for the pure substrate.The isotopically specific aspects of the reaction are explained in terms of the sequence:[Formula: see text]where M represents a third body, including the wall. The decrease in enrichment observed at high substrate pressures is shown to be due to Lorentz-broadening effects on the hyperfine absorption contours of HgN. The failure to obtain enrichment under static conditions is explained by the depletion in Hg202 of the HgN in the cell through reaction [1].The investigation shows that there are two primary processes operative in the mercury-6(3P1)-photosensitized decomposition of alkyl chlorides, in one of which calomel is formed. These processes presumably involve a common short-lived intermediate R—Cl—Hg.

1959 ◽  
Vol 37 (5) ◽  
pp. 930-939 ◽  
Author(s):  
C. C. McDonald ◽  
J. R. McDowell ◽  
H. E. Gunning

An investigation has been made of the reaction of Hg2026(3P1) atoms, photoexcited in natural mercury vapor, with flowing hydrogen chloride at 28–30 °C. Emphasis has been placed on the effect of reaction parameters on the Hg202 content of the calomel product of the reaction.Under fast-flow conditions it has been found that the calomel product contains 44% Hg202, corresponding to an enrichment of 48% over the normal abundance of 29.8%.In the presence of unsaturated compounds such as butadiene and benzene the enrichment is markedly increased. With butadiene and benzene as addends, the maximum enrichments were 98% and 85% respectively.The reaction with pure hydrogen chloride can be explained in terms of the sequence:[Formula: see text]where HgN is natural mercury and M is a third body, including the wall.In the presence of unsaturated compounds (U), additional reactions are postulated to occur:[Formula: see text]The increased enrichment in the presence of unsaturated addends is explained by the reduced rate of formation of HgNCl through cleanup of chlorine and hydrogen atoms by reactions [6] and [7].Under static conditions, the pure hydrogen chloride reaction formed a calomel product of normal Hg202 abundance. This finding is explained as a localized depletion of the unexcited mercury in Hg202, through reaction [1]. With increasing linear flow rate the depletion effect gradually disappears and enrichments maximize at high flow rates.The Hg202 enrichment was found to be very sensitive to the wall temperature of the Hg202 source. In a 50:50 v/v mixture of hydrogen chloride and butadiene the enrichment was found to decrease from 68% to 24% as the lamp temperature was raised from 25.5 °C to 50 °C. The effect is explained by temperature broadening of the emission line leading to overlap of the emission line on absorption contours adjacent to that of Hg202.Both the rate of deposition of the calomel product and the Hg202 enrichment were found to depend upon the concentration of natural mercury in the gas stream for hydrogen chloride – butadiene mixtures. Optimum conditions corresponded to a slight supersaturation of the stream with mercury vapor.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Vorasruang Thongsukh ◽  
Chanida Kositratana ◽  
Aree Jandonpai

Introduction. In patients who require a massive intraoperative transfusion, cold fluid or blood transfusion can cause hypothermia and potential adverse effects. One method by which to prevent hypothermia in these patients is to warm the intravenous fluid before infusion. The aim of this study was to determine the effect of the fluid flow rate on the efficacy of a fluid warmer. Methods. The room air temperature was controlled at 24°C. Normal saline at room temperature was used for the experiment. The fluid was connected to an infusion pump and covered with a heater line, which constantly maintained the temperature at 42°C. The fluid temperature after warming was measured by an insulated thermistor at different fluid flow rates (100, 300, 600, 900, and 1200 mL/h) and compared with the fluid temperature before warming. Effective warming was defined as an outlet fluid temperature of >32°C. Results. The room temperature was 23.6°C ± 0.9°C. The fluid temperature before warming was 24.95°C ± 0.5°C. The outlet temperature was significantly higher after warming at all flow rates (p<0.001). The increases in temperature were 10.9°C ± 0.1°C, 11.5°C ± 0.1°C, 10.2°C ± 0.1°C, 10.1°C ± 0.7°C, and 8.4°C ± 0.2°C at flow rates of 100, 300, 600, 900, and 1200 mL/h, respectively. The changes in temperature among all different flow rates were statistically significant (p<0.001). The outlet temperature was >32°C at all flow rates. Conclusions. The efficacy of fluid warming was inversely associated with the increase in flow rate. The outlet temperature was <42°C at fluid flow rates of 100 to 1200 mL/h. However, all outlet temperatures reached >32°C, indicating effective maintenance of the core body temperature by infusion of warm fluid.


2006 ◽  
Vol 291 (3) ◽  
pp. F663-F669 ◽  
Author(s):  
Tetsuji Morimoto ◽  
Wen Liu ◽  
Craig Woda ◽  
Marcelo D. Carattino ◽  
Yuan Wei ◽  
...  

Vectorial Na+ absorption across the aldosterone-sensitive distal nephron plays a key role in the regulation of extracellular fluid volume and blood pressure. Within this nephron segment, Na+ diffuses from the urinary fluid into principal cells through an apical, amiloride-sensitive, epithelial Na+ channel (ENaC), which is considered to be the rate-limiting step for Na+ absorption. We have reported that increases in tubular flow rate in microperfused rabbit cortical collecting ducts (CCDs) lead to increases in net Na+ absorption and that increases in laminar shear stress activate ENaC expressed in oocytes by increasing channel open probability. We therefore examined whether flow stimulates net Na+ absorption ( JNa) in CCDs by increasing channel open probability or by increasing the number of channels at the apical membrane. Both baseline and flow-stimulated JNa in CCDs were mediated by ENaC, as JNa was inhibited by benzamil. Flow-dependent increases in JNa were observed following treatment of tubules with reagents that altered membrane trafficking by disrupting microtubules (colchicine) or Golgi (brefeldin A). Furthermore, reducing luminal Ca2+ concentration ([Ca2+]) or chelating intracellular [Ca2+] with BAPTA did not prevent the flow-dependent increase in JNa. Extracellular trypsin has been shown to activate ENaC by increasing channel open probability, and we observed that trypsin significantly enhanced JNa when tubules were perfused at a slow flow rate. However, trypsin did not further enhance JNa in CCDs perfused at fast flow rates. Similarly, the shear-induced increase in benzamil-sensitive JNa in oocytes expressing protease resistance ENaC mutants was similar to that of controls. Our results suggest the rise in JNa accompanying increases in luminal flow rates reflects an increase in channel open probability.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hosu Kim ◽  
Tae Kyong Kim ◽  
Sukha Yoo ◽  
Jin-Tae Kim

Abstract Background A fluid warmer can prevent hypothermia during the perioperative period. This study evaluated the heating capabilities of Hotline and Barkey S-line under different flow rates and initial fluid temperatures, as well as after the extension line installation. Methods We measured the temperature of a 0.9% sodium chloride solution at the fluid warmer outlet (TProx) and the extension line end (TDistal) with three different initial fluid temperatures (room, warm, and cold) and two flow rates (250 ml/hr and 100 mL/hr). Results At a 250 ml/hr flow rate, the TProx and TDistal values were observed to be higher in Hotline than in S-line when using room-temperature or cold fluid. Administering of the warm fluid at the same flow rate significantly increased the TProx and TDistal values in S-line more than the cold and room-temperature fluids. At flow rates of 100 ml/hr, TDistal values were significantly lower than TProx values in both devices regardless of the initial fluid temperature. Conclusions Hotline outperformed S-line for warming fluids at a high flow rate with cold or room-temperature fluids. Administering warm fluid in S-line prevented a decrease in the fluid temperature at a high flow rate. However, at a low flow rate, the fluid temperature significantly decreased in both devices after passing through an extension line.


2021 ◽  
pp. 275-275
Author(s):  
Aaqib Imdad ◽  
Hassan Ali ◽  
Haroon Farooq ◽  
Hafiz Ali

Simulated condensation has been conducted on three wire wrapped tubes having same root diameter but different fin spacing of 1.5mm, 2mm and 2.5mm. Different fluids (Ethanol, Ethylene Glycol and Water) are used for condensation by providing them to the tubes through tiny holes in inter-fin spacing on the top of the surface of tubes. The major parameters are to be controlled in this research are fin spacing, vapor velocity, condensate flow rate and ratio of surface tension to density of the fluid. Obtained results show that flooding angle (calculated from the top of the tube to the level where fluid fills the fin) rises by increasing fin spacing. Also, retention angles increase by reducing ratio of surface tension to density of fluid. Acute flooding angles at zero air velocity and zero flow rate, elevates by increasing air velocity. However, obtuse flooding angles at static conditions drop by reducing air velocity. An interesting result is obtained regarding retention angle which remains almost even for the higher condensation flow rates until the tube gets inundated with condensation. Moreover, critical flow rates for all the tubes against using different working fluids are measured. Results obtained for static conditions have good correspondence with already available authentic data for flooding angle. Pictures showing condensate retention angles have been included in this paper.


2021 ◽  
Vol 8 ◽  
pp. 205566832110087
Author(s):  
Michael M Bailey-Van Kuren ◽  
Donna Scarborough

Introduction Clinical observations of children with swallowing disorders using a traditional “sippy” or transitional drinking cup identified a need for a novel cup. Children with swallowing disorders are often unable to initiate the forces required to activate the cup and/or maintain suction pressure. Furthermore, fast flow rates can result in choking. Methods A new cup design tool is proposed using fluid-cup interactions to capture the changing geometry of the fluid during drinking. A Petri net formulation is integrated with standard fluid flow principles. A new parametric cup simulation provides visualization and direct implementation for microcontroller prototypes. A vent-based controller is developed and modeled for a novel transitional drinking cup design. A simulated pouring study is performed for water and a baseline liquid volume of 200 ml in the cup. The study varies rotation rates, initial volume, system control and desired flow rates. Results Volumetric flow rate curves over time are generated and compared in relation to a target flow rate. The simulation results show expected behavior for variations in cup parameters. Conclusion The new simulation model facilitates future dysphagia research through rapid prototyping by tuning cup geometry, liquid parameters and control signals to meet the varying needs of the users.


2020 ◽  
Author(s):  
Hosu Kim ◽  
Tae Kyong Kim ◽  
Sukha Yoo ◽  
Jin-Tae Kim

Abstract Background A fluid warmer can prevent hypothermia during the perioperative period. This study evaluated the heating capabilities of Hotline and Barkey S-line under different flow rates and initial fluid temperatures, as well as after the extension line installation. Methods We measured the temperature of a 0.9% sodium chloride solution at the fluid warmer outlet (TProx) and the extension line end (TDistal) with three different initial fluid temperatures (room, warm, and cold) and two flow rates (250 ml/hr and 100 mL/hr). Results At a 250 ml/hr flow rate, the TProx and TDistal values were observed to be higher in Hotline than in S-line when using room-temperature or cold fluid. Administering of the warm fluid at the same flow rate significantly increased the TProx and TDistal values in S-line more than the cold and room-temperature fluids. At flow rates of 100 ml/hr, TDistal values were significantly lower than TProx values in both devices regardless of the initial fluid temperature. Conclusions Hotline outperformed S-line for warming fluids at a high flow rate with cold or room-temperature fluids. Administering warm fluid in S-line prevented a decrease in the fluid temperature at a high flow rate. However, at a low flow rate, the fluid temperature significantly decreased in both devices after passing through an extension line.


2020 ◽  
Author(s):  
Hosu Kim ◽  
Tae Kyong Kim ◽  
Sukha Yoo ◽  
Jin-Tae Kim

Abstract Background A fluid warmer can prevent hypothermia during the perioperative period. This study evaluated the heating capabilities of Hotline and Barkey S-line under different flow rates and initial fluid temperatures, as well as after the extension line installation. Methods We measured the temperature of a 0.9% sodium chloride solution at the fluid warmer outlet (TProx) and the extension line end (TDistal) with three different initial fluid temperatures (room, warm, and cold) and two flow rates (250 ml/hr and 100 mL/hr). Results At a 250 ml/hr flow rate, the TProx and TDistal values were observed to be higher in Hotline than in S-line when using room-temperature or cold fluid. Administering of the warm fluid at the same flow rate significantly increased the TProx and TDistal values in S-line more than the cold and room-temperature fluids. At flow rates of 100 ml/hr, TDistal values were significantly lower than TProx values in both devices regardless of the initial fluid temperature. Conclusions Hotline outperformed S-line for warming fluids at a high flow rate with cold or room-temperature fluids. Administering warm fluid in S-line prevented a decrease in the fluid temperature at a high flow rate. However, at a low flow rate, the fluid temperature significantly decreased in both devices after passing through an extension line.


2020 ◽  
Author(s):  
Hosu Kim ◽  
Tae Kyong Kim ◽  
Sukha Yoo ◽  
Jin-Tae Kim

Abstract Background A fluid warmer can prevent hypothermia during the perioperative period. This study evaluated the heating capabilities of Hotline and Barkey S-line under different flow rates and initial fluid temperatures, as well as after the extension line installation. Methods We measured the temperature of a 0.9% sodium chloride solution at the fluid warmer outlet (TProx) and the extension line end (TDistal) with three different initial fluid temperatures (room, warm, and cold) and two flow rates (250 ml/hr and 100 mL/hr). Results At a 250 ml/hr flow rate, the TProx and TDistal values were observed to be higher in Hotline than in S-line when using a room-temperature fluid; similar results were observed for the cold fluid. Administration of the warm fluid was observed to significantly increase the TProx and TDistal values in S-line at rates of 250 ml/hr more than the administration of the cold and room-temperature fluids. At flow rates of 100 ml/hr, TDistal values were significantly lower than TProx values in both devices regardless of the initial fluid temperature. Conclusions Hotline outperformed S-line for warming fluids at a high flow rate with cold or room-temperature fluids. The administration of the initially warm fluid prevented a decrease in the fluid temperature at a high flow rate in S-line. However, at a low flow rate, the fluid temperature significantly decreased in both devices after passing through an extension line.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Sign in / Sign up

Export Citation Format

Share Document