scholarly journals Modeling of a controlled flow cup for improved transitional drinking development in children

2021 ◽  
Vol 8 ◽  
pp. 205566832110087
Author(s):  
Michael M Bailey-Van Kuren ◽  
Donna Scarborough

Introduction Clinical observations of children with swallowing disorders using a traditional “sippy” or transitional drinking cup identified a need for a novel cup. Children with swallowing disorders are often unable to initiate the forces required to activate the cup and/or maintain suction pressure. Furthermore, fast flow rates can result in choking. Methods A new cup design tool is proposed using fluid-cup interactions to capture the changing geometry of the fluid during drinking. A Petri net formulation is integrated with standard fluid flow principles. A new parametric cup simulation provides visualization and direct implementation for microcontroller prototypes. A vent-based controller is developed and modeled for a novel transitional drinking cup design. A simulated pouring study is performed for water and a baseline liquid volume of 200 ml in the cup. The study varies rotation rates, initial volume, system control and desired flow rates. Results Volumetric flow rate curves over time are generated and compared in relation to a target flow rate. The simulation results show expected behavior for variations in cup parameters. Conclusion The new simulation model facilitates future dysphagia research through rapid prototyping by tuning cup geometry, liquid parameters and control signals to meet the varying needs of the users.

1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


Author(s):  
Michael Steppert ◽  
Philipp Epple ◽  
Michael Steber ◽  
Stefan Gast

Abstract PPV Fans (Positive Pressure Ventilation Fans) are used in firefighting to remove smoke from a burning building, so that fire fighters can have a clear view inside the house and injured people do not have to breathe toxic smoke. This can be done by placing a PPV fan in a distance of about two meters in front of a door of the burning building. On another, carefully chosen position in the building, e. g. a window, a door or at the roof an opening has to be created, where the smoke can leave the building. The same volumetric flow rate of gas that is blown into the building by the PPV fan has to leave the building at a chosen opening. Because the gas entering the building is air and the gas leaving the building is a mixture of smoke and air, the smoke concentration in the building can be reduced. To test the performance of such PPV fans, a test building with a door in the first floor and a window in the 3rd floor has been built. To measure the volumetric flow rate of the smoke and air mixture through the window in the 3rd floor that is leaving the building, a flow meter nozzle was designed. The design process was done using the commercial Navier Stokes solver Star CCM+, where three nozzle designs, such as a nozzle with constant velocity increase, a quarter circle nozzle and a non-curved nozzle were investigated for different volumetric flow rates. Also, a rounding at the window, where the nozzle is placed, was investigated to prevent flow detachment and shock losses at the inlet of the nozzle. The volumetric flow rate through the nozzle can be calculated, by measuring the pressure at the nozzle wall (before the contraction) and applying Bernoulli’s law, the continuity equation and assuming atmospheric pressure at the free jet flow at the end of the nozzle. The so calculated volumetric flow rate was compared with the actual flow rate, given by the numerical CFD simulations. With these values, the nozzle specific coefficient of discharge for several volumetric flow rates has been calculated and a function fitting was done to get obtain analytical relation between pressure and volumetric flow rate. The detailed design process of the three nozzles, the numerical results of the CFD studies and the determination of the nozzle specific coefficients of discharge are shown and discussed in detail in this work.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
D Frumkin ◽  
K Stangl ◽  
A Muegge ◽  
T Buck ◽  
B Plicht

Abstract Background In chronic mitral regurgitation (MR) the left atrium (LA) is one of the first cardiac structures involved in remodeling by progressive volume overload. Real-time three-dimensional echocardiography is able to monitor volumetric changes of the left atrium during the heart cycle. Purpose We hypothesized that chronic volume overload due to MR leads to detectable changes in the LA filling behavior described by mean and maximum filling flow rates and their relation called volumetric flow rate index. Methods We prospectively analyzed data of 36 patients in different stages of chronic MR and 13 patients without MR. Transthoracic echocardiography was conducted using the Epiq 7G Ultrasound System. Standard 2D- and 3D apical 4-chamber views were recorded and stored for offline analysis. We generated volume-time-curves by 3D volume analysis to derive mean and maximum volumetric flow rates during LA reservoir, conduit and pump phase. Volumetric flow rate index was calculated as the quotient of mean flow rate/maximum flow rate. Results Average MR severity, calculated with the MR Scoring system introduced from Buck et al. and implicated in the ESC Guidelines, was 6.2 points (±2.5) according to Grade I-II. We included 13 patients without MR, 18 with mild MR, 12 patients with moderate MR, 6 patients with severe MR. Left ventricular ejection fraction was similar in the different groups (51,2±12,3%). Maximum and mean flow rate showed no significant correlation with MR severity. Correlation of MR severity with LA dilation (ml/m2 BSA) was r=0.41; p<0.001. Flow rate index showed strong significant correlation with MR severity in left atrial reservoir phase (r=−0.75; p<0.001). There was no statistically relevant difference of volumetric flow rate parameters in left atrial pump and conduit phase. Line chart Conclusions We observed a significant correlation of the volumetric flow rate index to MR severity in the left atrial reservoir phase with stronger correlation than MR severity to left atrial dilation. The results of this work encourage further investigations to establish the presented volumetric flow rate index as a progression marker of MR and to evaluate its prognostic value.


2020 ◽  
Vol 10 (13) ◽  
pp. 4617
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

The influence of pressure on the gas/liquid interfacial area is investigated in the pressure range of 0.2–0.3 MPa by using a tray column test rig. A simulated waste gas, which consisted of 30% CO2 and 70% air, was used in this study. Distilled water was employed as an absorbent. The temperature of the inlet water was 19 °C. The inlet volumetric flow rate of water was 0.17 m3/h. Two series of experiments were performed; the first series was performed at inlet gas flow rate 15 Nm3/h, whereas the second series was at 20 Nm3/h of inlet gas flow rate. The results showed that the gas/liquid interfacial area decreases when the total pressure is increased. The effect of pressure on the gas/liquid interfacial area at high inlet volumetric gas flow rates is more significant than at low inlet volumetric gas flow rates. The authors studied the effect of decreasing the interfacial area on the performance of a tray column for CO2 capture.


1959 ◽  
Vol 37 (8) ◽  
pp. 1315-1327 ◽  
Author(s):  
K. R. Osborn ◽  
H. E. Gunning

A detailed investigation has been made of the reaction of Hg2026(3P1) atoms, photoexcited in natural mercury vapor (HgN), with methyl chloride, at room temperature. Data are also reported on the reaction with isopropyl chloride as substrate. Hg202 enrichment in the calomel product is taken as evidence of its formation in the primary quenching reaction.Under static conditions the methyl chloride reaction was found to form calomel with the natural Hg202 abundance (29.8%). With increasing flow rate a progressive increase in Hg202 abundance was observed. Maximum enrichments were found at fast flow rates, low substrate pressures, and high values for the absorbed light intensity (IA). The most highly enriched calomel obtained in this study contained 50.4% Hg202. With increasing IA, a corresponding increase in flow rate was required to achieve maximum Hg202 enrichment. The addition of propylene or butene-1 to the methyl chloride stream was found to result in a slight decrease in Hg202 abundance over that for the pure substrate.The isotopically specific aspects of the reaction are explained in terms of the sequence:[Formula: see text]where M represents a third body, including the wall. The decrease in enrichment observed at high substrate pressures is shown to be due to Lorentz-broadening effects on the hyperfine absorption contours of HgN. The failure to obtain enrichment under static conditions is explained by the depletion in Hg202 of the HgN in the cell through reaction [1].The investigation shows that there are two primary processes operative in the mercury-6(3P1)-photosensitized decomposition of alkyl chlorides, in one of which calomel is formed. These processes presumably involve a common short-lived intermediate R—Cl—Hg.


Author(s):  
Azzam S. Salman ◽  
Jamil A. Khan

An experimental study was conducted in a closed loop spray cooling system working with deionized water as a cooling medium, to investigate the effects of surface modification on the spray cooling heat transfer enhancement in the single-phase region. Plain copper surface with diameter 1.5 cm and an enhanced surface with circular grooves were tested under different operating conditions. The volumetric flow rate of the coolant ranged from 115 mL/min to 177 mL/min., and the water inlet temperature was kept between 21–23 °C. Also, the distances between the nozzle and the target surface were varied at 8, 10, and 12 mm respectively. The results show that the distance between the nozzle and the target surface did not have a significant effect on the heat transfer performance for the low flow rates, while it has a slight effect on high flow rates for both surfaces. Also, increasing the liquid volumetric flow rate increases the amount of heat removed, and the heat transfer coefficient for both surfaces. Moreover, the maximum enhancement ratios achieved were 23.4% and 31% with volumetric flow rates of 153 mL/min, and 177 mL/min respectively.


Author(s):  
A. E. Akmalov ◽  
G. E. Kotkovskii ◽  
S. V. Stolyarov ◽  
B. I. Verdiev ◽  
R. S. Ovchinnikov ◽  
...  

Testing the surrounding environment for the presence of biogenic aerosols is crucial in ensuring its safety for the population. It is often necessary to collect aerosol samples from large areas in short time, which demands excellent particle collection efficiency, a sufficient incoming air flow rate and a capacity to maintain the viability of the collected samples. Below we present the aerosol sampler with a high volumetric flow rate based on a two-stage particle concentration algorithm and consisting of a virtual impactor and a cyclone concentrator with a recirculating liquid phase. We provide all necessary calculations and an algorithm for modeling impactor parameters. The sampler was tested using dry and liquid formulations dispersed into the particles of 0.5 to 5 μm in diameter. We demonstrate that at volumetric flow rates over 4,000 l/min efficiency of particle collection into the liquid phase at a volume of 10 ml makes over 20% of the total aerosol mass and at volumetric flow rates over 300 l/min this value is over 60%. The proposed device maintains viability of the collected microorganisms. The sampler is portable, with flexible settings for sampling and cleaning, and can be controlled remotely over the network.


2006 ◽  
Vol 291 (3) ◽  
pp. F663-F669 ◽  
Author(s):  
Tetsuji Morimoto ◽  
Wen Liu ◽  
Craig Woda ◽  
Marcelo D. Carattino ◽  
Yuan Wei ◽  
...  

Vectorial Na+ absorption across the aldosterone-sensitive distal nephron plays a key role in the regulation of extracellular fluid volume and blood pressure. Within this nephron segment, Na+ diffuses from the urinary fluid into principal cells through an apical, amiloride-sensitive, epithelial Na+ channel (ENaC), which is considered to be the rate-limiting step for Na+ absorption. We have reported that increases in tubular flow rate in microperfused rabbit cortical collecting ducts (CCDs) lead to increases in net Na+ absorption and that increases in laminar shear stress activate ENaC expressed in oocytes by increasing channel open probability. We therefore examined whether flow stimulates net Na+ absorption ( JNa) in CCDs by increasing channel open probability or by increasing the number of channels at the apical membrane. Both baseline and flow-stimulated JNa in CCDs were mediated by ENaC, as JNa was inhibited by benzamil. Flow-dependent increases in JNa were observed following treatment of tubules with reagents that altered membrane trafficking by disrupting microtubules (colchicine) or Golgi (brefeldin A). Furthermore, reducing luminal Ca2+ concentration ([Ca2+]) or chelating intracellular [Ca2+] with BAPTA did not prevent the flow-dependent increase in JNa. Extracellular trypsin has been shown to activate ENaC by increasing channel open probability, and we observed that trypsin significantly enhanced JNa when tubules were perfused at a slow flow rate. However, trypsin did not further enhance JNa in CCDs perfused at fast flow rates. Similarly, the shear-induced increase in benzamil-sensitive JNa in oocytes expressing protease resistance ENaC mutants was similar to that of controls. Our results suggest the rise in JNa accompanying increases in luminal flow rates reflects an increase in channel open probability.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jinjin Liu ◽  
Liu Kai ◽  
Tong Zhao ◽  
Chuanxin Bai

The liquid phase maldistribution factor has been investigated in trickle bed reactor, and the results are compared with the previous measurement data from literature by using the Electrical Resistance Tomography. The simulation results are in agreement with the experimental results to some degree. The flow rates and particle sizes have been simulated with the method of multiphase flow. There are two different particles with average diameters of 3.4 mm and 5.3 mm. The flow rate has been studied ranging from 100 ml/min to 1100 ml/min. It has been found that the changes of the particles and liquid flow rates have a significant impact on the distribution of the liquid volume fraction. The internal liquid holdup is more serious, and the wall-flow phenomenon is more obvious in a bigger flow rate. The prediction of the liquid volume fraction distribution is a key research technique. Regression predictions have also been researched on the section near outlet, which can predict the internal flow state of the trickle bed under the condition of high temperature and high pressure. The average liquid volume fraction is linear with flow rates. The maldistribution factor is the index correlation with the flow rates. The results and main conclusions can be used to predict the distributions and get the properties in a trickle bed reactor.


Sign in / Sign up

Export Citation Format

Share Document