THE REACTION OF ACTIVE NITROGEN WITH METHANOL

1963 ◽  
Vol 41 (5) ◽  
pp. 1097-1103 ◽  
Author(s):  
M. J. Sole ◽  
P. A. Gartaganis

The reaction of active nitrogen with methanol has been investigated at several temperatures in the range 30 to 480 °C using a fast-flow system. The only condensable products found in appreciable amounts were water and hydrogen cyanide. The overall activation energy is 3.0 and 3.2 kcal/mole and the steric factors 1.3 × 10−3 and 2.1 × 10−3 for streamline and turbulent flow respectively.It is postulated that the mechanism consists of the initial formation of a collision complex, [NCH3OH], which breaks down to two fragments, NCH3 and OH, from which the two condensable products are formed,[Formula: see text]Attack of the methanol molecules by hydrogen atoms resulting from the main reaction occurs to a lesser extent and is responsible for the production of small quantities of methane, carbon monoxide, and additional water.


1965 ◽  
Vol 43 (4) ◽  
pp. 935-939 ◽  
Author(s):  
P. A. Gartaganis

The reaction of active nitrogen with ethanol has been investigated in the range 300 to 593 °K using a modified condensed-discharge Wood–Bonhoeffer fast-flow system. The only condensable products found in appreciable amounts were hydrogen cyanide and water. Hydrogen was the main noncondensable product. A very small amount of acetaldehyde was also formed along with traces of ethane, ethylene, methane, acetonitrile, cyanogen, and probably carbon monoxide. The overall activation energy is 3.4 kcal/mole. It is postulated that the mechanism consists of the formation of two fragments NC2H5 and OH, from which the condensable products result as follows:[Formula: see text]A number of products found in trace quantities are produced by concomitant reactions of the hydrogen atoms with methyl radicals, and with ethanol as well as by disproportionation of ethyl radicals to produce ethane and ethylene. A preliminary study of the reaction of active nitrogen with isopropanol indicated that the energy of activation is in line with the energies of activation of methanol and ethanol.



1964 ◽  
Vol 42 (7) ◽  
pp. 1638-1644 ◽  
Author(s):  
J. W. S. Jamieson ◽  
G. R. Brown

Reinvestigation of the reaction of hydrogen atoms, produced by electric discharge, with methane in a fast flow system has given an activation energy of 7.4 ± 1.1 kcal/mole and a steric factor of about 10−3 for the primary reaction, H + CH4 → H2 + CH3.



1962 ◽  
Vol 40 (2) ◽  
pp. 240-245 ◽  
Author(s):  
C. Mavroyannis ◽  
C. A. Winkler

The reaction has been studied in a fast-flow system by the addition of atomic hydrogen to active nitrogen. Hydrogen atom concentrations were estimated from the maximum destruction of hydrogen bromide in the atomic hydrogen stream. The nitrogen atom consumption, in the reaction mixture, was determined by addition of nitric oxide at different positions along the reaction tube. A lower limit of 4.87 ± 0.8 × 1014 cc2mole−2sec−1 was derived for the rate constant of the reaction of nitrogen atoms with hydrogen atoms, over the pressure range 2.5 to 4.5 mm, in an unheated reaction tube, poisoned with phosphoric acid. No reaction between nitrogen atoms and molecular hydrogen was observed, even at 350 °C.



1961 ◽  
Vol 39 (8) ◽  
pp. 1601-1607 ◽  
Author(s):  
C. Mavroyannis ◽  
C. A. Winkler

The reaction has been studied in a fast-flow system by introducing nitric oxide in the gas stream with excess active nitrogen. The nitrogen atom consumption was determined by titrating active nitrogen with nitric oxide at different positions along the reaction tube. The rate constant is found to be k1 = 1.83(± 0.2) × 1015 cc2 mole−2 sec−1 at pressures of 3, 3.5, and 4 mm, and with an unheated reaction tube.The homogeneous and surface decay of nitrogen atoms involved in the above system were studied using the nitric oxide titration method, and the rate constants were found to be k3 = 1.04 ± 0.17 × 1016 cc2 mole−2 sec−1, and k4 = 2.5 ± 0.2 sec−1 (γ = 7.5 ± 0.6 × 10–5), respectively, over the range of pressures from 0.5 to 4 mm with an unheated reaction tube.



1955 ◽  
Vol 33 (4) ◽  
pp. 692-698 ◽  
Author(s):  
G. R. Freeman ◽  
C. A. Winkler

Hydrazine was completely destroyed by active nitrogen, at both 150 °C. and 480 °C., up to a hydrazine flow rate of about 22 × 10−6 mole per sec., whereas ammonia production was small at hydrazine flow rates below about 12 × 10−6 mole per sec. Thus it appears that ammonia is formed in secondary reactions only. The results indicate that NH2 radicals rather than hydrogen atoms may be prominent in secondary reactions. Comparison of the rate of hydrazine destruction with the rate of production of hydrogen cyanide from ethylene indicates that excited nitrogen molecules do not make a large contribution to the chemical reactivity of active nitrogen.



1955 ◽  
Vol 33 (11) ◽  
pp. 1649-1655 ◽  
Author(s):  
D. A. Armstrong ◽  
C. A. Winkler

The main products of the reaction between active nitrogen and azomethane were hydrogen cyanide and ethane. Traces of methane, ethylene, and acetylene were also formed, together with small amounts of an unstable product. Activation energies of about 0.5 ± 0.4 and 1.9 ± 0.3 kcal. per mole, with corresponding steric factors of 10−1 to 10−3 and 10−2 to 10−4, were estimated for the reactions of active nitrogen with methyl radicals and azomethane respectively, on the assumption that atomic nitrogen is the reactive component of active nitrogen. Azomethane appeared to catalyze the deactivation of active nitrogen.



1964 ◽  
Vol 42 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Nick Demchuk ◽  
H. Gesser

The gas-phase reaction of atomic hydrogen with ketene has been investigated over a temperature range of −130° to 232 °C using a low-pressure, fast-flow system. In most cases methane, carbon monoxide, and ethane were the major products, but trace amounts of glyoxal were also detected. Above −96 °C. considerable evidence exists for the occurrence of a chain reaction carried by HCO radicals. The surface reaction at −196 °C produced methane and glyoxal predominantly with only a minor amount of carbon monoxide.



1956 ◽  
Vol 34 (10) ◽  
pp. 1457-1463 ◽  
Author(s):  
P. A. Gartaganis ◽  
C. A. Winkler

Reinvestigation of the active nitrogen – methane reaction in the temperature range 45° to 500 °C. has confirmed hydrogen cyanide as the only product, other than hydrogen, formed in measurable amounts. An “induction” effect in the hydrogen cyanide production was observed with increase of methane flow rate. This induction decreased with increase of temperature and was shown to be due to concomitant hydrogen atom reactions, since it could be eliminated by addition of hydrogen atoms to the reaction mixture. Reinvestigation of the active nitrogen – ethane reaction over the temperature range −100° to 475 °C. also confirmed hydrogen cyanide to be the only measurable product, other than hydrogen, of that reaction. There was some indication that an induction effect was present with ethane, as with methane, and it may be concluded tentatively that both reactions are carried substantially by hydrogen atom reactions.



1986 ◽  
Vol 64 (11) ◽  
pp. 2192-2195 ◽  
Author(s):  
William E. Jones ◽  
Joseph L. Ma

The absolute rate constants for the reaction of H atoms with methyl- and vinyl-halides have been determined using esr spectroscopy and a conventional gas flow system. The rate constants determined at 298 ± 2 K at a pressure of 0.55 Torr are methane, (1.7 ± 0.3) × 10−17; ethane, (2.3 ± 0.5) × 10−17; methylfluoride, (4 ± 3) × 10−15; methylchloride, (8 ± 2) × 10−16; methylbromide, (2.1 ± 0.6) × 10−14; vinylfluoride, (1.47 ± 0.02) × 10−13; vinylchloride, (1.66 ± 0.08) × 10−13; and vinylbromide (4.07 ± 0.73) × 10−13 in units of cm3 molecule−1 s−1.



Sign in / Sign up

Export Citation Format

Share Document