THE PYROLYSIS OF TRIMETHYLTHALLIUM

1965 ◽  
Vol 43 (7) ◽  
pp. 1961-1967 ◽  
Author(s):  
M. G. Jacko ◽  
S. J. W. Price

The pyrolysis of trimethylthallium has been studied in a toluene carrier flow system from 458 to 591 °K using total pressures from 5.6 to 33.0 mm. The progress of the reaction was followed by measuring the amount of methane, ethane, ethylene, and ethylbenzene formed and, in 21 runs, by direct thallium analysis. All preparative and kinetic work was carried out in total darkness where possible. A shielded 10 W lamp was used when some illumination was necessary.The decomposition is approximately 80% heterogeneous in an unconditioned vessel and 14–27% heterogeneous in a vessel pretreated with hot 50% HF for 10 min. The reaction proceeds by the simple consecutive release of three methyl radicals. The rate constant depends only slightly on the total pressure in the system so that the activation energy of the homogeneous process, 27.4 kcal/mole, may be equated to D[(CH3)2Tl—CH3].


1962 ◽  
Vol 40 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
S. J. Price

The pyrolysis of toluene has been studied in a flow system from 913 to 1143 °K. First-order rate constants are independent of the toluene concentration but decrease approximately 9% when the contact time is reduced from 1.0 to 0.41 second. Increasing the contact time from 1.0 second to 2.07 seconds does not affect the rate constant. The overall rate has been resolved into homogeneous and heterogeneous components. It is suggested that the activation energy of the homogeneous process, 85 kcal/mole, may be associated with D(C6H5CH2—H).



1972 ◽  
Vol 50 (1) ◽  
pp. 50-54 ◽  
Author(s):  
R. P. Johnson ◽  
S. J. W. Price

The pyrolysis of tetramethyltin has been studied in a toluene carrier flow system from 803–941 °K using total pressures of 10.6 to 52.4 mm. Contact times varied from 0.49 to 13.8 s and the amount of decomposition from 1.35–98.7%. The progress of the reaction was followed by measuring the amount of methane, ethane, ethylene, and ethylbenzene formed. No appreciable heterogeneous reaction was detected and the first order rates constants appear to have been determined at the high pressure limit. The quantity of undecomposed alkyl was also measured and was found to be in agreement with the product analysis if four methyl radicals are released for each molecule undergoing reaction.Least squares analysis gives[Formula: see text]with an estimated uncertainty in E of ± 1 kcal mol−1. The activation energy should be a good approximation to D[(CH3)3Sn—CH3].



1972 ◽  
Vol 50 (7) ◽  
pp. 966-971 ◽  
Author(s):  
S. J. W. Price ◽  
J. P. Richard

The pyrolysis of trimethylantimony has been studied in a toluene carrier flow system over the temperature range 690–803 °K (total pressures 3.6–173.4 mm, contact times 1.0–13.5 s, decomposition 3.9–89.5%). The progress of the reaction was followed by measuring the amount of methane, ethane, and ethylbenzene formed. In 23 runs the undecomposed alkyl was also determined. The quantity found was in agreement with that expected from the product analysis if three methyl radicals are released for each molecule undergoing reaction. No heterogeneous reaction was detected.Deuterium labeling led to the conclusion that regeneration of the parent alkyl occurred during the course of the decomposition. This regeneration reaction was effectively eliminated by working at toluene pressures above 150 mm. Least squares analysis of the results obtained under conditions where regeneration should not be important givenLog10k/s−1 = 15.33 − (55 900 ± 1 000)/2.3RTThe activation energy should be a good approximation to D[(CH3)2Sb—CH3].Significant decomposition of SbCH3 probably does not occur. It seems most likely that free Sb is formed via 2Sb(CH3) → Sb(CH3)2 + Sb.



1970 ◽  
Vol 48 (22) ◽  
pp. 3487-3490 ◽  
Author(s):  
J. Brown ◽  
George Burns

Kinetics of BrO decomposition was studied between 293 and 673 °K using the technique of kinetic spectroscopy. At 293 °K the reaction rate is second order with respect to BrO and is independent of [Br2], [O2], and total pressure of diluent gas. The activation energy for decomposition obtained from rate measurements between 293 and 450 °K is 0.65 ± 0.05 kcal/mole. Above 450 °K this activation energy appears to increase to 4.5 kcal/mole. It is shown that, although kinetically the ClO and BrO decompositions are similar, the mechanism for BrO decomposition below 450 °K is much simpler than that of ClO. The reaction proceeds, most likely, via one step: 2 BrO → 2 Br + O2, with Br2O2 being an activated complex, which has either linear or staggered configuration. ClO and BrO decomposition is compared with [Formula: see text] reaction.



1970 ◽  
Vol 48 (20) ◽  
pp. 3209-3212 ◽  
Author(s):  
S. J. W. Price ◽  
J. P. Richard

The pyrolysis of trimethylarsine has been studied in a toluene carrier flow system from 764 to 858 °K using total pressures from 6.35 to 35.5 mm. Contact times varied from 0.9 to 3.7 s and the amount of decomposition, from 1.2 to 73 %. The progress of the reaction was followed by measuring the amount of methane, ethane, ethylene, and ethylbenzene formed. No heterogeneous reaction was detected and the first order rate constants appear to have been determined at approximately the high pressure limit. In seven runs the undecomposed alkyl was also measured. The quantity found was in agreement with the product analysis if three methyl radicals are released for each molecule undergoing reaction.Least squares analysis of the results gives[Formula: see text]The activation energy should be a good approximation to D[(CH3)2As—CH3]. The product analysis and the values of k4/k51/2 are consistent with the simple consecutive release of three methyl radicals but thermodynamic and kinetic considerations may preclude this possibility.



1976 ◽  
Vol 54 (11) ◽  
pp. 1814-1819 ◽  
Author(s):  
Mary Daly ◽  
S. James W. Price

The thermal decomposition of tetraethyltin in a toluene carrier flow System has been studied over the temperature range 725 to 833 K and decompositions of 3.4 to 98.0%. Total pressure in all runs were in the range 0.63 to 0.90 kPa and contact times of 0.59 to 4.2 s were used.The progress of the reaction was followed by carrying out full analysis of all pyrolysis products involving the C2H5 radical, assuming that all four C2H5 groups are released. In selected runs analysis for unreacted alkyl was also performed. The agreement between the two methods indicates that reaction 1 is followed rapidly by reactions 2, 3, and 4,[Formula: see text]or alternate reactions that result in the release of all four C2H5 groups each time reaction 1 occurs. The decomposition is essentially homogeneous and[Formula: see text]or −59 340/4.58T if the activation energy is expressed in cal rather than J. Combination of present values of k5 with data from previous studies



1959 ◽  
Vol 37 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
A. R. Blake ◽  
K. O. Kutschke

The pyrolysis of di-t-butyl peroxide has been reinvestigated and used as a source of methyl radicals to study the abstraction reaction between methyl radicals and formaldehyde. At low [HCHO]/[peroxide] ratios the system was simple enough for kinetic analysis, and a value of 6.6 kcal/mole was obtained for the activation energy. At higher [HCHO]/[peroxide] ratios the system became very complicated, possibly due to the increased importance of addition reactions.



1968 ◽  
Vol 46 (2) ◽  
pp. 191-197 ◽  
Author(s):  
A. T. C. H. Tan ◽  
A. H. Sehon

The pyrolysis of phenylmercaptoacetic acid was investigated by the toluene-carrier technique over the temperature range 760–835 °K. The main products of the decomposition were phenyl mercaptan, carbon dioxide, acetic acid, phenyl methyl sulfide, carbon monoxide, and dibenzyl.The overall decomposition was a first-order reaction with respect to phenylmercaptoacetic acid and could be represented by the two parallel steps:[Formula: see text]Reaction [1] was shown to be a homogeneous first-order dissociation process, and its rate constant was represented by the expression[Formula: see text]The activation energy of this reaction, i.e. 58 kcal/mole, was identified with D(C6H5S—CH2COOH).



1966 ◽  
Vol 44 (18) ◽  
pp. 2211-2217 ◽  
Author(s):  
J. B. Homer ◽  
F. P. Lossing

The thermal decomposition of biallyl has been investigated from 977 – 1 070 °K at helium carrier gas pressures of 10–50 Torr. Under these conditions the rate of central C—C bond fission to give two allyl radicals can be measured without interference from secondary reactions. The reaction at the pressures employed is first order with respect to biallyl, but between first and second order in the total pressure. The temperature dependence of the rate constants, extrapolated to infinite pressure, and corrected to 298 °K, gives an activation energy of 45.7 kcal/mole for the reaction, corresponding to ΔHf(allyl) = 33.0 kcal/mole.



1965 ◽  
Vol 43 (4) ◽  
pp. 935-939 ◽  
Author(s):  
P. A. Gartaganis

The reaction of active nitrogen with ethanol has been investigated in the range 300 to 593 °K using a modified condensed-discharge Wood–Bonhoeffer fast-flow system. The only condensable products found in appreciable amounts were hydrogen cyanide and water. Hydrogen was the main noncondensable product. A very small amount of acetaldehyde was also formed along with traces of ethane, ethylene, methane, acetonitrile, cyanogen, and probably carbon monoxide. The overall activation energy is 3.4 kcal/mole. It is postulated that the mechanism consists of the formation of two fragments NC2H5 and OH, from which the condensable products result as follows:[Formula: see text]A number of products found in trace quantities are produced by concomitant reactions of the hydrogen atoms with methyl radicals, and with ethanol as well as by disproportionation of ethyl radicals to produce ethane and ethylene. A preliminary study of the reaction of active nitrogen with isopropanol indicated that the energy of activation is in line with the energies of activation of methanol and ethanol.



Sign in / Sign up

Export Citation Format

Share Document