The Mass Spectrometry of para-Substituted Benzyl Nitrates

1971 ◽  
Vol 49 (2) ◽  
pp. 333-337 ◽  
Author(s):  
P. J. Smith

The mass spectra of several para-substituted benzyl nitrates have been measured at 70 and 15 eV. The major fragmentation pathways have been established using deuterium labelling and measurement of metastable peaks. The formation of the para. Y.C6H4.CH2O+ ions from the parent ions approximately correlate with the Hammett sigma constants. A hydrogen-deuterium isotope effect of approximately 1.8 was found for the loss of hydrogen (deuterium) from the C6H6CHDO+ ion at 10 eV.


2009 ◽  
Vol 15 (4) ◽  
pp. 497-506 ◽  
Author(s):  
Tomasz Pospieszny ◽  
Elżbieta Wyrzykiewicz

Electron ionisation (EI) and fast atom bombardment (FAB) mass spectral fragmentations of nine 2,4-(and 2,1-) disubstituted o-( m- and p-)nitro-(chloro- and bromo-)-2-thiocytosinium halides are investigated. Fragmentation pathways, whose elucidation is assisted by accurate mass measurements and metastable transitions [EI-mass spectrometry (MS)], as well as FAB/collision-induced dissociation (CID) mass spectra measurements are discussed. The correlations between the abundances of the (C11H10N4SO2)+1–3; (C11H10N3SCl)+4–6 and (C11H10N3SBr)+7–9 ions and the selected fragment ions (EI-MS), as well as (C18H16N5SO4)+1–3; (C18H16N3SCl2)+4–6 and (C18H16N3SBr2) + 7–9 ions and the selected ions (C7H6NO2)+1–3; (C7H6Cl)+ 4–6; (C7H6Br)+ 7–9 (FAB-MS) are discussed. The data obtained can be used for distinguishing isomers.



1972 ◽  
Vol 50 (5) ◽  
pp. 678-689 ◽  
Author(s):  
D. H. Hunter ◽  
S. K. Sim

The mechanism of the cyclization and 1,3-proton shift of 1,3,5-triaryl-2,4-diaza-1,3-pentadienes (1) catalyzed by phenyllithium and by potassium methoxide–methanol has been studied. On the basis of substituent effects, hydrogen–deuterium exchange, isotope effects, and solvent effects, it was deduced that both the cyclization and prototropy involve a common W-shaped carbanion which rapidly cyclizes. A kinetic deuterium isotope effect of 2 was calculated for protonation of this intermediate carbanion in methanol.



1992 ◽  
Vol 70 (4) ◽  
pp. 1028-1032 ◽  
Author(s):  
Nigel J. Bunce ◽  
H. Stewart McKinnon ◽  
Randy J. Schnurr ◽  
Sam R. Keum ◽  
Erwin Buncel

The mass spectral fragmentation pathways of a series of phenylazoxypyridine-N-oxides have been studied under electron impact conditions using tandem mass spectrometry. Besides simple C—N cleavages, the azoxypyridine-N-oxides undergo deep-seated rearrangements directly from the molecular ion. In addition, the spectra are complicated by a purely chemical reduction of the N—O functionalities that occurs in the ion source prior to ionization.



1972 ◽  
Vol 50 (6) ◽  
pp. 871-879 ◽  
Author(s):  
P. J. Smith ◽  
J. R. Dimmock ◽  
W. G. Taylor

The mass spectra of a series of nuclear substituted styryl ketones with the structure[Formula: see text]and several relaTed compounds have been determined. The major fragmentation pathways include such processes as an aromatic substitution reaction occurring in the molecular ion as well as the McLafferty rearrangement. Only one of the two possible α-cleavages at the carbonyl function was observed. The major decomposition processes are outlined and compared with the recent results of a study on α,β-unsaturated aliphatic ketones. Mechanistic pathways are suggested for the formation of the major fragment ions.







1973 ◽  
Vol 26 (7) ◽  
pp. 1577 ◽  
Author(s):  
JW Clark-Lewis ◽  
CN Harwood ◽  
MJ Lacey ◽  
JS Shannon

The chemical ionization mass spectra of a series of tricyclic flavanoid compounds have been examined using isobutane and hydrogen as reagent gases and the fragmen- tation modes have been correlated systematically in terms of structure. The technique produces simple fragmentation patterns and abundant metastable ions. The use of deuterium as reagent gas reveals the influence of extraneous water on the spectra and facilitates the interpretation of the fragmentation pathways. The fragment ions appear to arise from isomeric progenitors protonated at different sites in the molecules.



Sign in / Sign up

Export Citation Format

Share Document