The rhodium(II)-catalyzed aziridination of olefins with {[(4-nitrophenyl)sulfonyl]imino}phenyl-lambda3-iodane

1998 ◽  
Vol 76 (6) ◽  
pp. 738-750 ◽  
Author(s):  
Paul Müller ◽  
Corine Baud ◽  
Yvan Jacquier

The aziridination of olefins with {(4-nitrophenylsulfonyl)imino}phenyl-lambda3-iodane, NsN==IPh (1c), in the presence of [Rh2(OAc)4] proceeds in yields of up to 85% when the olefin is used in large excess. Under optimized conditions, styrene (4a) is aziridinated with 1 equiv. of NsN==IPh (1c) in 64% yield with 2 mol% of catalyst. The aziridines derived from electron-rich olefins undergo ring-opening under the conditions of the aziridination and afford rearrangement products or pyrrolidines. The aziridination is sterospecific with 1,2-dialkyl- and 1,2-arylalkyl-disubstituted olefins, but nonstereospecific with stilbene.The rho -value for aziridination of substituted styrenes is -0.61. No ring-opened products are observed upon aziridination of vinylcyclopropanes. In the presence of chiral RhII catalysts, the aziridination is enantioselective, affording an ee of 73% with cis- β -methylstyrene (4k) and Pirrungs [Rh2{(R)-(-)-bnp}4] catalyst. The experimental results are consistent with a one-step mechanism for transfer of the nitrenoid moiety from the catalyst to the olefin.Key words: aziridination, nitrene transfer, rhodium catalysis.

2020 ◽  
Author(s):  
Thomas De Dios Miguel ◽  
Nam Duc Vu ◽  
Marc Lemaire ◽  
Nicolas Duguet

The ring-opening of epoxidized methyl oleate by aqueous H<sub>2</sub>O<sub>2</sub> has been studied using tungsten and molybdenum catalysts to form the corresponding fatty b-hydroxy hydroperoxides. It was found that tungstic acid and phosphostungstic acid gave the highest selectivities (92-93%) towards the formation of the desired products, thus limiting the formation of the corresponding fatty 1,2-diols. The optimized conditions were applied to a range of fatty epoxides to give the corresponding fatty b-hydroxy hydroperoxides with 30-80% isolated yields (8 examples). These species were fully characterized by <sup>1</sup>H and <sup>13</sup>C NMR, HPLC-HRMS and their stability was studied by DSC. The thermal cleavage of the b-hydroxy hydroperoxide derived from methyl oleate was studied both in batch and flow conditions. It was found that the thermal cleavage in flow conditions gave the highest selectivity towards the formation of aldehydes with limited amounts of byproducts. The aldehydes were both formed with 68% GC yield and nonanal and methyl 9-oxononanoate were isolated with 57 and 55% yield, respectively. Advantageously, the overall process does not require large excess of H<sub>2</sub>O<sub>2</sub> and only generates water as a byproduct.


2020 ◽  
Author(s):  
Thomas De Dios Miguel ◽  
Nam Duc Vu ◽  
Marc Lemaire ◽  
Nicolas Duguet

The ring-opening of epoxidized methyl oleate by aqueous H<sub>2</sub>O<sub>2</sub> has been studied using tungsten and molybdenum catalysts to form the corresponding fatty b-hydroxy hydroperoxides. It was found that tungstic acid and phosphostungstic acid gave the highest selectivities (92-93%) towards the formation of the desired products, thus limiting the formation of the corresponding fatty 1,2-diols. The optimized conditions were applied to a range of fatty epoxides to give the corresponding fatty b-hydroxy hydroperoxides with 30-80% isolated yields (8 examples). These species were fully characterized by <sup>1</sup>H and <sup>13</sup>C NMR, HPLC-HRMS and their stability was studied by DSC. The thermal cleavage of the b-hydroxy hydroperoxide derived from methyl oleate was studied both in batch and flow conditions. It was found that the thermal cleavage in flow conditions gave the highest selectivity towards the formation of aldehydes with limited amounts of byproducts. The aldehydes were both formed with 68% GC yield and nonanal and methyl 9-oxononanoate were isolated with 57 and 55% yield, respectively. Advantageously, the overall process does not require large excess of H<sub>2</sub>O<sub>2</sub> and only generates water as a byproduct.


2020 ◽  
Author(s):  
Thomas De Dios Miguel ◽  
Nam Duc Vu ◽  
Marc Lemaire ◽  
Nicolas Duguet

The ring-opening of epoxidized methyl oleate by aqueous H<sub>2</sub>O<sub>2</sub> has been studied using tungsten and molybdenum catalysts to form the corresponding fatty b-hydroxy hydroperoxides. It was found that tungstic acid and phosphostungstic acid gave the highest selectivities (92-93%) towards the formation of the desired products, thus limiting the formation of the corresponding fatty 1,2-diols. The optimized conditions were applied to a range of fatty epoxides to give the corresponding fatty b-hydroxy hydroperoxides with 30-80% isolated yields (8 examples). These species were fully characterized by <sup>1</sup>H and <sup>13</sup>C NMR, HPLC-HRMS and their stability was studied by DSC. The thermal cleavage of the b-hydroxy hydroperoxide derived from methyl oleate was studied both in batch and flow conditions. It was found that the thermal cleavage in flow conditions gave the highest selectivity towards the formation of aldehydes with limited amounts of byproducts. The aldehydes were both formed with 68% GC yield and nonanal and methyl 9-oxononanoate were isolated with 57 and 55% yield, respectively. Advantageously, the overall process does not require large excess of H<sub>2</sub>O<sub>2</sub> and only generates water as a byproduct.


Synlett ◽  
2021 ◽  
Author(s):  
Quentin Michaudel ◽  
Samuel J. Kempel ◽  
Ting-Wei Hsu

AbstractOlefin metathesis has tremendously impacted all fields of synthetic chemistry. However, the control of the olefin stereochemistry during this process remains a grand challenge. Recent innovations in catalyst design have permitted control of the stereochemistry of the olefin product. Here, we discuss the development of stereoretentive olefin metathesis, with an emphasis on the synthesis of stereodefined polyalkenamers through ring-opening metathesis polymerization (ROMP). We then present our application of this unique reaction manifold to the preparation of all-cis poly(p-phenylene vinylene)s (PPVs). A dithiolate Ru catalyst was found to deliver perfect cis selectivity for the polymerization of a paracyclophane diene monomer. By using optimized conditions, all-cis PPVs with narrow dispersities and predictable molar masses were obtained by varying the ratio of monomer to catalyst. The high chain fidelity of the stereoretentive ROMP with a paracyclophane diene monomer enabled the preparation of well-defined diblock copolymers with a norbornene co-monomer. Photochemical isomerization of all-cis to all-trans PPVs was effected with both homopolymers and diblock copolymers. This process was shown to be selective for the PPV block, and resulted in changes in optical properties, polymer size, and solubility. Stereoretentive ROMP provides a promising platform for synthesizing polymers with unique properties, including photoresponsive all-cis PPVs with living characteristics.1 Introduction2 Synthetic Applications of Stereoretentive Olefin Metathesis3 Stereocontrol of Polyalkenamers through Stereoretentive ROMP4 Stereoretentive ROMP To Access All-cis Poly(p-phenylene vinylene)s5 Conclusion


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
Karolina Zawadzińska ◽  
Karolina Kula

The regiochemistry of [3+2] cycloaddition (32CA) processes between benzonitrile N-oxide 1 and β-phosphorylated analogues of nitroethenes 2a–c has been studied using the Density Functional Theory (DFT) at the M062X/6-31+G(d) theory level. The obtained results of reactivity indices show that benzonitrile N-oxide 1 can be classified both as a moderate electrophile and moderate nucleophile, while β-phosphorylated analogues of nitroethenes 2a–c can be classified as strong electrophiles and marginal nucleophiles. Moreover, the analysis of CDFT shows that for [3+2] cycloadditions with the participation of β-phosphorylatednitroethene 2a and β-phosphorylated α-cyanonitroethene 2b, the more favored reaction path forms 4-nitro-substituted Δ2-isoxazolines 3a–b, while for a reaction with β-phosphorylated β-cyanonitroethene 2c, the more favored path forms 5-nitro-substituted Δ2-isoxazoline 4c. This is due to the presence of a cyano group in the alkene. The CDFT study correlates well with the analysis of the kinetic description of the considered reaction channels. Moreover, DFT calculations have proven the clearly polar nature of all analyzed [3+2] cycloaddition reactions according to the polar one-step mechanism.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 438 ◽  
Author(s):  
Manyu Shao ◽  
Ming Yao ◽  
Sarah De Saeger ◽  
Liping Yan ◽  
Suquan Song

An eco-friendly and efficient one-step approach for the synthesis of carbon quantum dots (CDs) that encapsulated molecularly imprinted fluorescence quenching particles (MIFQP) and their application for the determination of zearalenone (ZEA) in a cereal sample are described in this study. CDs with high luminescence were first synthesized, and then encapsulated in the silica-based matrix through a non-hydrolytic sol-gel process. The resulting ZEA-imprinted particles exhibited not only an excellent specific molecular recognition of ZEA, but also good photostability and obvious template binding-induced fluorescence quenching. Under the optimized conditions, the fluorescence intensity of MIFQP was inversely proportional to the concentration of ZEA. By validation, the detection range of these fluorescence quenching materials for ZEA was between 0.02 and 1.0 mg L−1, and the detection limit was 0.02 mg L−1 (S/N = 3). Finally, the MIFQP sensor was successfully applied for ZEA determination in corn with recoveries from 78% to 105% and the relative standard deviation (RSD %) was lower than 20%, which suggests its potential in actual applications.


Author(s):  
Luis R. Domingo ◽  
Mar Ríos-Gutiérrez ◽  
Nivedita Acharjee

The [3+2] cycloaddition (32CA) reactions of strongly nucleophilic norbornadiene (NBD) with simplest diazoalkane (DAA) and three DAAs of increased electrophilicity have been studied within the Molecular Electron Density Theory (MEDT) at the MPWB1K/6-311G(d,p) computational level. These pmr-type 32CA reactions follow an asynchronous one-step mechanism with activation enthalpies ranging from 17.7 to 27.9 kcal&middot;mol-1 in acetonitrile. The high exergonic character of these reactions makes them irreversible. The presence of electron-withdrawing (EW) substituents in the DAA increases the activation enthalpies, in complete agreement with the experimental slowing-down of the reactions, but contrary to the Conceptual DFT prediction. Despite the nucleophilic and electrophilic character of the reagents, the global electron density transfer at the TSs indicates rather non-polar 32CA reactions. The present MEDT study allows establishing that the depopulation of the NNC core in this series of DAAs with the increase of the EW character of the substituents present at the carbon center is responsible for the experimentally found deceleration.


Sign in / Sign up

Export Citation Format

Share Document