Method for the differentiation of leaf litter extracts and study of their interaction with Cu(II) by molecular fluorescence

1998 ◽  
Vol 76 (8) ◽  
pp. 1197-1209 ◽  
Author(s):  
Joaquim CG Esteves da Silva ◽  
Adélio ASC Machado ◽  
Miguel A Ferreira ◽  
Francisco Rey

Six leaf litter extracts (LLE) (eucalyptus (Eucaliptus globulus), fern (Pteridium aquilinium), oak (Quercus robur), chestnut (Castanea sátiva), laurel (Laurus nobilis), and ulex (Ulex europoeus) canopies) were isolated following an extraction procedure similar to that used for fulvic acids (FA) and were characterized by elemental analysis and UV-Vis, FT-IR, and synchronous molecular fluorescence (SyF) spectroscopies. Moreover, information about their interaction with the Cu(II) ion in aqueous solution (100 mg yL of LLE in 0.1 M KNO3 at pH = 6) was obtained from the measurement of SyF spectra at increasing concentrations of Cu(II). These spectral sets were treated by a self-modeling mixture analysis method (SIMPLISMA) to obtain improved quenching profiles to be used in the estimation by the method of Ryan and Weber of the conditional stability constants (Kc), concentration of binding sites, and percentage of fluorescent binding sites accessible for complexation. For comparison purposes, two samples of FA extracted from two horizons of an oak forest soil (0-5 cm and 5-15 cm) were also studied. The spectroscopic data obtained for LLE and FA were different. The results suggest that LLE are characterized by relatively high concentrations of individualized simple molecules and include reactive structures (alkene and protein residues). The ratio of aliphatic yaromatic structures was higher in LLE than for FA. Both LLE and soil FA form stable complexes with Cu(II), but the logarithm of the conditional stability constant of the 1:1 complexes is larger for LLE (about 5) than for the soil FA (about 4.5).Key words: leaf litter extracts, soil fulvic acids, synchronous fluorescence, Cu(II) complexation, SIMPLISMA, spectral pattern recognition.

1996 ◽  
Vol 50 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Joaquim C. G. Esteves Da Silva ◽  
Adélio A. S. C. Machado

The interaction of Al(III) with two samples of fulvic acids (fua), extracted from materials present in a pinewood soil (fua2 from the upper soil horizon, or leaf litter, and fua3 from lower soil horizons), was followed by synchronous fluorescence (SyF) spectroscopy at pH 4. The variations observed in the inverted second-derivative spectral data were analyzed by SIMPLISMA, a self-modeling curve resolution technique. Three binding sites were detected for each fua sample, and their spectra and SyF intensity profiles were obtained. Conditional stability constants for coordination of one binding site of each fua and Al(III) were obtained (log values): fua2, 5.65(15); fua3, 4.64(2). The experimental and data analysis methodologies were validated by analysis of data obtained for salicylic acid under the same conditions. The log value found for its conditional stability constant for Al(III) coordination at pH 4 was 4.34(15).


1995 ◽  
Vol 49 (10) ◽  
pp. 1500-1506 ◽  
Author(s):  
Joaquim C. G. Esteves Da Silva ◽  
Adélio A. S. C. Machado ◽  
Teresa M. O. Garcia

The interaction of Be(II) with two samples of fulvic acids (fua), extracted from materials present in a pinewood soil (fua2 from upper and fua3 from lower soil horizons), was followed by synchronous molecular fluorescence spectroscopy at pH = 6 and 11. The variations observed in the spectral data were analyzed by evolving factor analysis (EFA). It was found that Be(II) is a useful probe for detecting different ligand structures in complex mixtures of the fua type. The existence of common ligand structures in the two fua samples at both pH values studied was observed. These are probably of the salicylic acid type. Dihydroxylic structures of the catechol type were also detected. The logarithm of the mean conditional stability constants for coordination of the fua ligand structures of the salicylic acid type and Be(II) were obtained (at a pH of 6 and 11, respectively): fua2, 5.85(2) and 5.24(9); fua3, 6.5(1) and 5.08(4). This strong coordination indicates that fua can have an important function in the immobilization of Be(II) dispersed into the environment.


Metallomics ◽  
2021 ◽  
Author(s):  
Afsana Mahim ◽  
Mohammad Mahim ◽  
David H Petering

Abstract The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that non-specific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione. In agreement, inclusion of glutathione accelerated the reaction in a concentration-dependent manner. The implications of abundant high affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with glutathione in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.


2018 ◽  
Vol 15 (2) ◽  
pp. 58 ◽  
Author(s):  
Laura Cotte ◽  
Dario Omanović ◽  
Matthieu Waeles ◽  
Agathe Laës ◽  
Cécile Cathalot ◽  
...  

Environmental contextCopper released by deep-sea hydrothermal vents has been recognised to be partly stabilised against precipitation by its complexation with strong Cu binding ligands. Yet, the sources and nature of these compounds in such environments are still not fully understood. This study shows that the Cu ligands detected are hydrothermally sourced and could be mainly inorganic sulfur species. AbstractThe apparent speciation of Cu in the early buoyant plume of two black smokers (Aisics and Y3) from the hydrothermal vent field Lucky Strike (Mid-Atlantic Ridge) was investigated using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE–AdCSV). We have assessed the apparent Cu-binding ligand concentration ([L]) and the corresponding conditional stability constant (log K′) for 24 samples. At the smoker Aisics, [L] ranged from 18.2 to 2970 nM. Log K′CuL ranged from 12.4 to 13.4. At Y3, the binding capacity of natural ligands was from 32.5 to 1020 nM, with Log K′CuL ranging from 12.5 to 13.1. Total dissolved Cu ranged from 7.0 to 770 nM and from 12.7 to 409 nM at Aisics and Y3, respectively. Our results show that the amount of ligand L increases with dissolved Mn (dMn) concentrations, suggesting a hydrothermal origin of the Cu-binding ligands detected. In addition, such high concentrations of Cu-binding ligands can only be explained by an additional abiotic source differing from organic processes. Based on the massive in situ concentrations of free sulfides (up to 300 µM) and on the striking similarities between our log K′CuL and the log K′Cu(HS) previously published, we infer that the Cu-binding ligands could be predominantly inorganic sulfur species in the early buoyant plume of the two vent sites studied.


1979 ◽  
Vol 57 (11) ◽  
pp. 1263-1268 ◽  
Author(s):  
Robert A. Saar ◽  
James H. Weber

We studied the conditional stability constants of cadmium(II) bound to fulvic acid derived from water and soil, and found that (1) stability constants increased with increasing pH, and (2) stability constants decreased as we increased the fulvic acid concentration toward 70 mg/L. The second effect does not occur for the copper(II)–fulvate system. Conformational changes that occur when a fulvic acid solution becomes more concentrated apparently weaken sites that are otherwise more accessible to weak-binding cadmium. From pH 4 to 8, the overall conditional stability constant increases from 1.4 to 12 × 103 for water-derived fulvic acid and from 1.7 to 43 × 103 for soil-derived fulvic acid. Increases in fulvic acid concentration from 20 mg/L to 70 mg/L halve the conditional stability constant at a given pH.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


2012 ◽  
Vol 18 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Sameer Abdulrahman ◽  
Kanakapura Basavaiah

Two simple, sensitive and extraction-free spectrophotometric methods are described for the determination of dothiepin hydrochloride (DOTH) both in pure form and in pharmaceutical tablets. The methods are based on ion-pair complex formation between dothiepin base (DOT) and two acidic dyes, namely, bromophenol blue (BPB) or bromocresol green (BCG) with absorption maximum at 425 nm for BPB method or 430 nm for BCG method. Beer?s law is obeyed over the concentration ranges of 1.0-15.0 and 1.0-17.5 ?g mL-1 DOT for BPB and BCG methods, respectively. The molar absorptivity values and Sandell?s sensitivity values are reported for both methods. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.18 and 0.53 ?g mL-1 for BPB method, and 0.17 and 0.50 ?g mL-1 for BCG method, respectively. The stoichiometry of the complex in either case was found to be 1: 1 and the conditional stability constant (KF) of the complexes has also been calculated. The proposed methods were applied successfully to the determination of DOTH in pure form and in its tablet form with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at 95% confidence level and there was no significant difference between the official and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique.


2005 ◽  
Vol 2 (1) ◽  
pp. 56 ◽  
Author(s):  
Sylvia Sander ◽  
Jonathan P. Kim ◽  
Barry Anderson ◽  
Keith A. Hunter

Environmental Context. The bioavailability of dissolved metals in natural waters is directly affected by metal-sequestering agents. These agents include soil-derived matter and compounds released by microorganisms, since copper can support or inhibit aquatic microorganisms depending on concentration. During summer the levels of copper increase in surface waters, an effect intuitively attributable to increased ultraviolet light degrading the sequestering agents more effectively, leading to a concurrent release of the metal. This paper shows that the amount of degradation attributable to light is too low to explain the metal release and that a biological influence may instead be responsible. Abstract. The influence of UVB irradiation on the Cu2+ binding by natural organic ligands in six alpine lakes on the South Island, New Zealand, has been investigated using competitive ligand equilibration with salicylaldoxime and detection by cathodic stripping voltammetry (CLE-CSV). During austral summer 2002–2003 the total dissolved Cu ([Cu]T), the concentration of strong Cu2+-binding ligands ([L]T), and their conditional stability constant K´´ were determined in surface samples of all six lakes. All lakes exhibited appreciable concentrations of a strong Cu2+ binding ligand with similar K´´ values and concentrations always exceeding [CuT], thus dominating Cu2+ speciation. Four lakes (Hayes, Manapouri, Wanaka, Te Anau) showed no appreciable trend in [LT] throughout the summer, whereas in Lakes Wakatipu and Hawea [LT] increased steadily throughout this period. Laboratory UVB irradiation of lake water samples using a 400 W mercury lamp with a Pyrex glass filter (λ > 280 nm) showed that Cu2+-binding ligands are destroyed by UVB radiation, causing [L]T to decrease with a rate of –0.588 nmol L–1 h–1 (r2 0.88). From this we calculate that the in situ ligand destruction rate by UVB in summer for surface waters of these lakes is too small to significantly affect [LT], and conclude that variations in ligand concentrations must result from seasonally variable biological factors.


1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


2009 ◽  
Vol 15 (2) ◽  
pp. 69-76 ◽  
Author(s):  
S.M. Al-Ghannam ◽  
A.M. Al-Olyan

A sensitive spectrophotometric method was developed for the determination of some 1,4-dihydropyridine compounds namely, nicardipine and isradipine either in pure form or in pharmaceutical preparations. The method is based on the reduction of nicardipine and isradipine with zinc powder and calcium chloride followed by further reduction with sodium pentacyanoaminoferrate (II) to give violet and red products having the absorbance maximum at 546 and 539 nm with nicardipine and isradipine, respectively. Beer's law was obeyed over the concentration range 8.0-180 ?g/ml with the detection limit of 1.67 ?g/ml for nicardipine and 8.0-110 ?g/ml with the detection limit of 1.748 ?g/ml for isradipine. The analytical parameters and their effects on the reported methods were investigated. The molar absorptivity, quantization limit, standard deviation of intercept (Sa), standard deviation of slope (Sb) and standard deviation of the residuals (Sy/x) were calculated. The composition of the result compounds were found 1:1 for nicardipine and 1:2 for isradipine by Job's method and the conditional stability constant (Kf) and the free energy changes (?G) were calculated for compounds formed. The proposed method was applied successfully for the determination of nicardipine and isradipine in their dosage forms. The results obtained were in good agreement with those obtained using the reference or official methods. A proposal of the reaction pathway was presented.


Sign in / Sign up

Export Citation Format

Share Document