Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada

2012 ◽  
Vol 58 (3) ◽  
pp. 293-302 ◽  
Author(s):  
A.K. Singh ◽  
C. Hamel ◽  
R.M. DePauw ◽  
R.E. Knox

Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, ‘AC Morse’ had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas ‘Commander’, which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of ‘Mongibello’, which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

1970 ◽  
Vol 48 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Florencia Soteras ◽  
Noelia Cofré ◽  
José Bartoloni ◽  
Marta Cabello ◽  
Alejandra Becerra

Summary: Arbuscular fungi (Glomeromycota) in the rhizosphere of Atriplex lampa at two saline environments of Córdoba (Argentina): depth influence on root colonization and the presence of morphospecies. Atriplex lampa is a valuable fodder shrub available for browsing by livestock even during drought periods in the Chaco Phytogeographical Province. Halophytes may benefit from the association with arbuscular mycorrhizal fungi (AMF) through improved tolerance to drought and salt. Ecological studies of AMF are generally restricted to the main rooting zone. However, AMF vertical distribution and seasonal dynamics in natural saline soils of Argentina have been poorly studied. The aim of this work was to explore AMF root colonization, root concentration and to identify AMF morphoespecies in A. lampa rhizosphere in two saline environments (Salinas de Ambargasta and Salinas Grandes) of central Argentina, in five soil depth levels, during the wet and dry seasons. Despite we did not find arbuscules, AMF were found colonizing A. lampa roots in all depth levels. Salinas Grandes showed the highest root colonization value, and showed the highest root concentration, during wet season. The 20 AMF morphospecies identified in this work belonged to the genera: Acaulospora, Ambispora, Claroideoglomus, Diversispora, Funneliformis, Glomus, Septoglomus and Scutellospora. This is the second record in Argentina of AMF structures in A. lampa roots. Future studies that evaluate mycorrhizal dependency of the plant are necessary to confirm the function of the symbiosis.Key words: Arbuscular mycorrhizal fungi; saline soils; Atriplex lampa; depth soil; seasonality.Resumen: Atriplex lampa es un arbusto halófito de la provincia fitogeográfica Chaqueña que constituye un recurso forrajero a lo largo de todo el año. Las plantas halófitas se pueden beneficiar al asociarse con los hongos micorrícico arbusculares (HMA), ya que le proveen resistencia contra la salinidad y la sequía. En general, los estudios acerca de los HMA están restringidos a los primeros centímetros del suelo y existe poca información sobre su presencia a mayores profundidades. El objetivo de este trabajo fue estudiar la colonización, la concentración radical e identificar las morfoespecies de HMA en la rizosfera de A. lampa en dos ambientes salinos del norte de la provincia de Córdoba, durante dos estaciones del año, y en cinco profundidades del suelo. Aunque no se encontraron arbúsculos, A. lampa presentó colonización radical por HMA en todas las profundidades. El mayor valor de colonización micorrícica y de concentración radical se observó en las Salinas Grandes. Se identificaron 20 morfoespecies de HMA pertenecientes a los géneros: Acaulospora, Ambispora, Claroideoglomus, Diversispora, Funneliformis, Glomus, Septoglomus y Scutellospora.Este es el segundo registro en Argentina de la presencia de HMA en raíces de A. lampa. Es necesario realizar estudios que evalúen la respuesta de A. lampa frente a la inoculación con HMA para confirmar la funcionalidad de la simbiosis.Palabras clave: Hongos micorrícico arbusculares; suelos salinos; Atriplex lampa; profundidad del suelo, estacionalidad.


Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

2003 ◽  
Vol 69 (5) ◽  
pp. 2816-2824 ◽  
Author(s):  
Fritz Oehl ◽  
Ewald Sieverding ◽  
Kurt Ineichen ◽  
Paul Mäder ◽  
Thomas Boller ◽  
...  

ABSTRACT The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.


2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


2018 ◽  
Vol 36 ◽  
pp. 63-74 ◽  
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Samuel A. Sartwell ◽  
Emma V. Ordemann ◽  
Dorota L. Porazinska ◽  
Emily C. Farrer ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 1-10 ◽  
Author(s):  
Henry Alexander Reyes ◽  
Paula Fernanda Alves Ferreira ◽  
Luana Corrêa Silva ◽  
Marlon Gomes da Costa ◽  
Camila Pinheiro Nobre ◽  
...  

2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


Sign in / Sign up

Export Citation Format

Share Document