Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems

1999 ◽  
Vol 45 (8) ◽  
pp. 709-715 ◽  
Author(s):  
Pierre Payment

To evaluate the inactivating power of residual chlorine in a distribution system, test microorganisms (Escherichia coli, Clostridium perfringens, bacteriophage phi-X 170, and poliovirus type 1) were added to drinking water samples obtained from two water treatment plants and their distribution system. Except for Escherichia coli, microorganisms remained relatively unaffected in water from the distribution systems tested. When sewage was added to the water samples, indigenous thermotolerant coliforms were inactivated only when water was obtained from sites very close to the treatment plant and containing a high residual chlorine concentration. Clostridium perfringens was barely inactivated, suggesting that the most resistant pathogens such as Giardia lamblia, Cryptosporidium parvum, and human enteric viruses would not be inactivated. Our results suggest that the maintenance of a free residual concentration in a distribution system does not provide a significant inactivation of pathogens, could even mask events of contamination of the distribution, and thus would provide only a false sense of safety with little active protection of public health. Recent epidemiological studies that have suggested a significant waterborne level of endemic gastrointestinal illness could then be explained by undetected intrusions in the distribution system, intrusions resulting in the infection of a small number of individuals without eliciting an outbreak situation.Key words: drinking water, chlorine, disinfection, pathogens, distribution system.

Author(s):  
Wenjin Xue ◽  
Christopher W. K. Chow ◽  
John van Leeuwen

Abstract The bacterial regrowth potential (BRP) method was utilised to indirectly measure the assimilable organic carbon (AOC) as an indicator for the assessment of the microbial regrowth potential in drinking water distribution systems. A model using various microbial growth parameters was developed in order to standardise the experimental interpretation for BRP measurement. This study used 82 experimental BRP data sets of water samples collected from the water treatment plant to locations (customer taps) in the distribution system. The data were used to model the BRP process (growth curve) by a data fitting procedure and to obtain a best-fitted equation. Statistical assessments and model validation for evaluating the equation obtained by fitting these 82 sets of data were conducted, and the results show average R2 values were 0.987 for treated water samples (collected at the plant prior to chlorination) and 0.983 for tap water (collected at the customer taps). The F values obtained from the F-test are all exceeded their corresponding F critical values, and the results from the t-test also showed a good outcome. These results indicate this model would be successfully applied in modelling BRP in drinking water supply systems.


1997 ◽  
Vol 36 (5) ◽  
pp. 317-324 ◽  
Author(s):  
M.J. Rodriguez ◽  
J.R. West ◽  
J. Powell ◽  
J.B. Sérodes

Increasingly, those who work in the field of drinking water have demonstrated an interest in developing models for evolution of water quality from the treatment plant to the consumer's tap. To date, most of the modelling efforts have been focused on residual chlorine as a key parameter of quality within distribution systems. This paper presents the application of a conventional approach, the first order model, and the application of an emergent modelling approach, an artificial neural network (ANN) model, to simulate residual chlorine in a Severn Trent Water Ltd (U.K.) distribution system. The application of the first order model depends on the adequate estimation of the chlorine decay coefficient and the travel time within the system. The success of an ANN model depends on the use of representative data about factors which affect chlorine evolution in the system. Results demonstrate that ANN has a promising capacity for learning the dynamics of chlorine decay. The development of an ANN appears to be justifiable for disinfection control purposes, in cases when parameter estimation within the first order model is imprecise or difficult to obtain.


2007 ◽  
Vol 55 (5) ◽  
pp. 161-168 ◽  
Author(s):  
T.H. Heim ◽  
A.M. Dietrich

Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a “plastic/adhesive/putty” odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.


2007 ◽  
Vol 73 (11) ◽  
pp. 3755-3758 ◽  
Author(s):  
Talis Juhna ◽  
Dagne Birzniece ◽  
Janis Rubulis

ABSTRACT The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.


2008 ◽  
Vol 6 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Orapin Thapsingkaew ◽  
Vilailuck Kijjanapanich ◽  
Werawan Ruangyuttikarn

The efficiency of ozonation in comparison to chlorination for removal of microcystins and production of trihalomethanes (THMs) in water was investigated. One hundred and ninety water samples of ozone and chlorine treated water were collected at a water treatment plant between August 2004 and March 2005. The level of THMs, total organic carbon and residual chlorine were determined. Protein phosphatase 2A inhibition assay was used to detect microcystins and the presence of microcystins was confirmed by HPLC. The results show that 91.5% of the THM species in treated water was chloroform and 8.5% was bromodichloromethane. The mean THM level± standard error of mean in chlorinated water (CW) (45.1±3.0 μg/L) was higher than the mean of THM level in ozonated water (OW) (18.6±2.2 μg/L). In addition, no OW sample exceeded the first stage U.S. EPA maximum THM contaminant level for drinking water (80 μg/L) and only 8% of these samples exceeded the second stage level (40 μg/L). On the other hand, 3% of CW samples exceeded 80 μg/L and 68% exceeded the 40 μg/L level. The microcystin level in all water samples was below the WHO guideline value (1 μg/L) for drinking water.


2006 ◽  
Vol 72 (9) ◽  
pp. 5864-5869 ◽  
Author(s):  
Elizabeth D. Hilborn ◽  
Terry C. Covert ◽  
Mitchell A. Yakrus ◽  
Stephanie I. Harris ◽  
Sandra F. Donnelly ◽  
...  

ABSTRACT There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM.


2020 ◽  
Author(s):  
Ababu T. Tiruneh ◽  
Tesfamariam Y. Debessai ◽  
Gabriel C. Bwembya ◽  
Stanley J. Nkambule

Abstract. Monitoring of chlorine residual in water distribution systems is necessary not only for ensuring potable water quality but also prevent emergence of disinfection by-products due to excess chlorination. Modelling work for chlorine residual was carried out for water supply distribution network of a town using both second order and first order reaction rate models. For the development of the model, the bulk reaction decay rate was determined in the laboratory using bottle testing while the wall decay rate was determined by calibration of the water quality model using field residual chlorine concentration measurements. The model results show that there is no significant difference in the residual chlorine between the two models or the cost saving that result in terms chlorine usage for the range of initial chlorine dosages anticipated. Constant rate chlorine model is more conservative and offers additional safety in terms of chlorine residual present. Significant differences only occur at excess chlorine residual concentration within the distribution system above the intended maximum residual to be attained. Further research that relates the chlorine dose with the water quality characteristics is necessary to make a more general evaluation.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
M. R. Siti Farizwana ◽  
S. Mazrura ◽  
A. Zurahanim Fasha ◽  
G. Ahmad Rohi

The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.


2020 ◽  
Vol 20 (3) ◽  
pp. 1083-1090
Author(s):  
M. Wolf-Baca ◽  
A. Siedlecka

Abstract Drinking water should be free from bacterial pathogens that threaten human health. The most recognised waterborne opportunistic pathogens, dwelling in tap water, are Legionella pneumophila and Escherichia coli. Drinking water samples were tested for the presence of Legionella spp., L. pneumophila, and E. coli in overall sample microbiomes using a quantitative real-time polymerase chain reaction (qPCR) approach. The results indicate a rather low contribution of Legionella spp. in total bacteria in the tested samples, but L. pneumophila was not detected in any sample. E. coli was detected in only one sample, but at a very low level. The qacEΔ1 gene, conferring resistance to quaternary ammonium compounds, was also not detected in any sample. The results point to generally sufficient quality of drinking water, although the presence of Legionella spp. in tap water samples suggests proliferation of these bacteria in heating units, causing a potential threat to consumer health.


2021 ◽  
Vol 3 (1) ◽  
pp. 10-18
Author(s):  
Iuliana Paun ◽  
◽  
Florentina Laura Chiriac ◽  
Vasile Ion Iancu ◽  
Florinela Pirvu ◽  
...  

Chlorine is widely used in Romania and all over the world as a disinfectant of drinking water. During the chlorination process, the natural organic matter and inorganic ions react with chlorine forming disinfection by-products (DBPs). The predominant organic disinfection by-products are trihalomethanes (THMs) while the main inorganic disinfection by-products are chlorate and chlorite ions. THMs were detected in all investigated drinking water samples from Bucharest distribution system with values from 27.8 µg/L up to 75.1 µg/L, which are below the maximum concentration value admitted by Romanian drinking water legislation of 100 µg/L. Chloroform constitutes the major component in total THMs concentration found in all tested drinking water. Chlorate and chlorite anions were not detected in any of the investigated drinking water samples. THMs concentration was correlated with total organic carbon (TOC), residual chlorine and chloride.


Sign in / Sign up

Export Citation Format

Share Document