Temporal, spatial, and structural patterns of adult trembling aspen and white spruce mortality in Quebec's boreal forest

2004 ◽  
Vol 34 (2) ◽  
pp. 396-404 ◽  
Author(s):  
Dominic Senecal ◽  
Daniel Kneeshaw ◽  
Christian Messier

Temporal, spatial, and structural patterns of adult trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) mortality were studied in intact 150-year-old stands in the southwestern boreal forest of Quebec. For both species, mortality decreases (number of dead trees/total number of trees) with distance from the lake edge until 100–150 m, from which point it slightly increases. Strong peaks in mortality were found for 40- to 60-year-old aspen mainly between 1974 and 1992. Such mortality in relatively young aspen is likely related to competition for light from the dominant canopy trees. Also, the recruitment of this young aspen cohort is presumably the result of a stand breakup that occurred when the initial aspen-dominated stand was between 90 and 110 years old. For spruce, strong peaks in mortality were found in 110- to 150-year-old trees and they occurred mainly after 1980. No clear explanation could be found for these peaks, but we suggest that they may be related to senescence or weakening of the trees following the last spruce budworm outbreak. Suppressed and codominant aspen had a much higher mortality ratio than spruce in the same height class, while more surprisingly, no difference in mortality rate was found between dominant trees of the two species. Most spruce trees were found as standing dead, which leads us to reject the hypothesis that windthrow is an important cause of mortality for spruce in our forests.


2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.



2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.



2006 ◽  
Vol 36 (7) ◽  
pp. 1818-1833 ◽  
Author(s):  
Daniel A MacIsaac ◽  
Philip G Comeau ◽  
S Ellen Macdonald

This study assessed the dynamics of gap development in postharvest regeneration in five stands in northwestern Alberta dominated by trembling aspen (Populus tremuloides Michx.). The pattern of gap development over time was determined from analysis of air photographs taken preharvest and 1, 4, 10, and 12 years postharvest. The area of each stand covered by gaps increased after harvest because of the addition of harvest-related gaps over and above those that had been present prior to harvest. The blocks we studied had a combined gap area of up to 29% of stand area 12 years postharvest. We measured regeneration characteristics, microsite, soil, light, and browse conditions in 30 aspen regeneration gaps (gaps in regeneration that were not gaps preharvest and were not due to obvious harvest-related disturbance) 14 years following harvest. Although deciduous trees within postharvest regeneration gaps were the same age as those outside (i.e., in a fully stocked matrix of newly established even-aged aspen stems), they were often suppressed, with significantly lower density and growth. Within the 14-year-old postharvest regenerating aspen stands, aspen height varied from 1 to 11 m; this substantial variability appeared to be largely due to the influence of browsing. There was little evidence of ongoing regeneration within postharvest regeneration gaps, indicating that these gaps will probably persist over time. This may impact future deciduous stocking and volume. It is unknown what may have initiated the formation of these gaps, although results suggest that they are not due to edaphic conditions or disease in the preharvest stands. There is evidence that bluejoint (Calamagrostis canadensis (Michx.) Beauv.) cover and browsing are important factors in the maintenance of postharvest regeneration gaps. The spatial heterogeneity resulting from gaps could be advantageous, however, either as part of ecosystem-based management emulating natural disturbance or as a template for mixedwood management, where white spruce (Picea glauca (Moench) Voss) are established in gaps.



1998 ◽  
Vol 76 (2) ◽  
pp. 181-188 ◽  
Author(s):  
James D Stewart ◽  
Edward H Hogg ◽  
Patrick A Hurdle ◽  
Kenneth J Stadt ◽  
Peter Tollestrup ◽  
...  

The dispersal of white spruce (Picea glauca (Moench) Voss) seed through trembling aspen (Populus tremuloides Michx.) forests was investigated by releasing artificial seed (confetti) from different heights on a meteorological tower, and, secondly, by observing the distribution of spruce regeneration along transects radiating out from small isolated patches of mature spruce seed trees. Mean dispersal distance of confetti increased with height of release. Before leaf fall of the aspen canopy, most confetti landed close to and in all directions around the tower. After leaf fall, no confetti was observed upwind from the tower and the mean dispersal distance increased, with peak densities occurring at a distance of 15 m in the downwind direction. The rate of decrease in regeneration density with distance from patches of mature, seed-bearing white spruce was much less than that observed during confetti release experiments. Furthermore, regeneration densities were significantly greater in the prevailing downwind direction (toward the east). The results indicate that stronger than average winds, primarily from the northwest, west, and southwest, play a major role in the dispersal of white spruce seed. Simulation modelling of the observed distribution of regeneration suggests that long-distance (>250 m) dispersal may be an important mechanism for the persistence of white spruce in the fire-prone boreal forest of western Canada.Key words: seed dispersal, boreal forest, mixedwood, wind dispersal, artificial seed.



2019 ◽  
pp. 297-307
Author(s):  
Yuqing Yang ◽  
Shongming Huang ◽  
Robert Vassov ◽  
Brad Pinno ◽  
Sophan Chhin

Climate-sensitive height–age models were developed for top height trees of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), and white spruce (Picea glauca (Moench) Voss) in natural and reclaimed oil sands stands. We used stem analysis data collected from the Athabasca oil sands region in northern Alberta, Canada, and climate data generated by the ClimateWNA model. Height–age trajectories differed between top height trees in natural and reclaimed stands for jack pine and white spruce, but not for trembling aspen. At a given age, white spruce top height trees were taller and jack pine top height trees were shorter in reclaimed stands than those in natural stands, suggesting that it is easier to achieve similar forest productivity for oil sands sites reclaimed with white spruce stands than for sites reclaimed with jack pine stands. The principal climate variables were growing season (May to September) precipitation averaged over the previous 10 years for trembling aspen and jack pine and summer (June to August) precipitation averaged over the previous 10 years for white spruce. These variables had positive effects on the height–age trajectories.



2016 ◽  
Vol 46 (2) ◽  
pp. 262-273 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau

White spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) from unmanaged stands in the boreal forest of Alberta, Canada, were examined for two of the main structural assumptions in the process-based model CROBAS: (i) a constant allometric relationship between foliage mass and crown length and (ii) a constant relationship between foliage mass and sapwood area. We evaluated these relationships at both at the whole-crown and within-crown levels. Results indicated that for both species, a constant allometric relationship between foliage mass and crown length was maintained at the whole-crown level over a period exceeding the peak mean annual increment of each species. Within the crowns of spruce, foliage mass accumulated faster near the tree apex as total crown length increased. For aspen, the increase in foliage mass per unit crown length for any section within the crown showed greater similarity to the relationship observed at the whole-crown level. The assumption of a constant relationship between foliage mass and sapwood area at the crown base generally held for spruce but showed considerable variation for any given diameter class. For aspen, this assumption did not appear to be appropriate. For both species, there was more foliage mass per unit sapwood area with increasing height from the ground for nearly all tree size classes. This latter finding was in conflict with the pipe model theory but could not be explained by the hydraulic theory of crown architecture, which predicts a decrease in the ratio of foliage mass to sapwood area with increasing path length.



2003 ◽  
Vol 33 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ryan D Hangs ◽  
J Diane Knight ◽  
Ken CJ Van Rees

Little is known about the N uptake abilities of competitor species and planted seedlings in the boreal forest. The objective of this study was to determine the Michaelis–Menten kinetic parameters of NH4+ and NO3– for white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb.) seedlings, and three competitive common boreal forest early successional species: aspen (Populus tremuloides Michx.), fireweed (Epilobium angustifolium L.), and cala magrostis (Calamagrostis canadensis (Michx.) Beauv.). Uptake kinetics were measured in hydroponic cultures and expressed as maximum uptake (Imax) and ion affinity (Km). The ranking of Imax values (pmol·cm-2·s–1) for NH4+ uptake was calamagrostis (84.6), fireweed (58.1), white spruce (20.7), aspen (12.5), and jack pine (10.9), and for NO3– uptake was calamagrostis (17.7), fireweed (12.5), aspen (5.8), white spruce (4.5), and jack pine (2.1). The ranking of Km values (µM) for NH4+ uptake was calamagrostis (125.9), fireweed (163.8), aspen (205.7), white spruce (217.1), and jack pine (270.5), and for NO3– uptake was calamagrostis (229.9), fireweed (274.6), aspen (336.5), white spruce (344.5), and jack pine (350.5). Calamagrostis exhibited the greatest uptake rates and affinity for NH4+ and NO3–, suggesting that silviculture practices that specifically reduce establishment of this grass should benefit the growth of planted seedlings.



2006 ◽  
Vol 36 (9) ◽  
pp. 2331-2340 ◽  
Author(s):  
Suzanne Brais ◽  
David Paré ◽  
Cédric Lierman

To assess nutrient dynamics in decomposing logs of trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.), we monitored mass losses and changes in N and P contents in dead boles from a chronosequence of sites following stand-replacing disturbances. To assess the importance of wood decomposition to nutrient cycling, we compared net estimates of nutrient release from logs with net nutrient immobilization in live-tree biomass of stands as a function of time since disturbance. Mineralization rates were 0.060, 0.053, 0.038, and 0.020·year–1 for trembling aspen, white birch, white spruce, and jack pine logs, respectively. Trembling aspen boles released large quantities of N and P during the first year of decomposition (51 kg·ha–1 of N and 7 kg·ha–1 of P, assuming a bole volume of 150 m3·ha–1). White birch boles acted initially as a nutrient sink and delayed the release of immobilized nutrients until a period when the stand's net nutrient immobilization rates were highest. Jack pine boles appeared to be intermediate in terms of their contribution as a sink or a source of nutrients but, in mature stands, provided up to 40% of N and 26% of P immobilized annually in tree biomass. As pure stands of white spruce are rare in boreal Quebec, information on nutrient accumulation in white spruce stands was not available.





2011 ◽  
Vol 41 (4) ◽  
pp. 728-739 ◽  
Author(s):  
Robert L. Fleming ◽  
Allister D. Smith

Many of the major questions regarding stand establishment practices involve implications for longer-term ecosystem development. We examined 41-year treatment effects on stand composition and dynamics using a white spruce ( Picea glauca (Moench) Voss) planting, mechanical site preparation (MSP) – herbicide (2,4-D plus 2,4,5-T) trial in a trembling aspen ( Populus tremuloides Michx.) dominated mixedwood. Both barrel and blade MSP with planting increased total and white spruce year 41 stand-level biomass over that in untreated areas. Year 2 herbicide application reduced year 41 trembling aspen biomass without substantially increasing that of white spruce, resulting in total yields similar to those in untreated areas. Barrel MSP increased year 41 trembling aspen biomass over that of untreated areas whereas blade MSP reduced it. Herbicide-related declines in trembling aspen biomass persisted or increased with time whereas white spruce response to herbicide varied with time and MSP. By accounting for inherent growth patterns, age shift calculations gave more balanced temporal depictions of planted white spruce response than effect size or percentage gain calculations. With barrel MSP, stand composition demonstrated a degree of mixedwood homeostasis whereas with blading, trembling aspen composition declined unilaterally from year 20 to 41.



Sign in / Sign up

Export Citation Format

Share Document