Comparison of coniferous forest carbon stocks between old-growth and young second-growth forests on two soil types in central British Columbia, Canada

2005 ◽  
Vol 35 (6) ◽  
pp. 1411-1421 ◽  
Author(s):  
Arthur L Fredeen ◽  
Claudette H Bois ◽  
Darren T Janzen ◽  
Paul T Sanborn

Carbon (C) stocks were assessed for hybrid interior spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.)-dominated upland forests within the Aleza Lake Research Forest in central British Columbia, Canada. Four old-growth (141–250 years old) and four young second-growth (<20 years old) forest plots were established on the two dominant soil texture types, coarse and fine, for a total of 16 plots. Mean total C stocks for old-growth stands ranged from 423 Mg C·ha–1 (coarse) to 324 Mg C·ha–1 (fine), intermediate between Pacific Northwest temperate forests and upland boreal forests. Total C was lower in second-growth stands because of lower tree (mostly large tree stem), forest floor, and woody debris C stocks. In contrast, old-growth forest-floor C stocks ranged from 78 Mg C·ha–1 (coarse) to 35 Mg C·ha–1 (fine), 2.9- and 1.2-fold higher than in corresponding second-growth stands, respectively. Woody debris C stocks in old-growth stands totaled 35 Mg C·ha–1 (coarse) and 31 Mg C·ha–1 (fine), 2.7- and 3.4-fold higher than in second-growth stands, respectively. Mineral soil C to 1.07 m depth was similar across soil type and age-class, with totals ranging from 115 to 106 Mg C·ha–1. Harvesting of old-growth forests in sub-boreal British Columbia lowers total C stocks by 54%–41%.

2007 ◽  
Vol 87 (1) ◽  
pp. 93-102 ◽  
Author(s):  
J M Kranabetter ◽  
A M Macadam

The extent of carbon (C) storage in forests and the change in C stocks after harvesting are important considerations in the management of greenhouse gases. We measured changes in C storage over time (from postharvest, postburn, year 5, year 10 and year 20) in logging slash, forest floors, mineral soils and planted lodgepole pine (Pinus contorta var. latifolia) trees from six prescribed-burn plantations in north central British Columbia. After harvest, site C in these pools averaged 139 Mg ha-1, with approximately equal contributions from mineral soils (0–30 cm), forest floors and logging slash. Together these detrital pools declined by 71 Mg C ha-1, or 51% (28% directly from the broadcast burn, and a further 23% postburn), in the subsequent 20 yr. Postburn decay in logging slash was inferred by reductions in wood density (from 0.40 to 0.34 g cm-3), equal to an average k rate of 0.011 yr-1. Losses in forest floor C, amounting to more than 60% of the initial mass, were immediate and continued to year 5, with no reaccumulation evident by year 20. Mineral soil C concentrations initially fluctuated before declining by 25% through years 10 and 20. Overall, the reductions in C storage were offset by biomass accumulation of lodgepole pine, and we estimate these plantations had become a net sink for C before year 20, although total C storage was still less than postharvest levels. Key words: C sequestration, forest floors; coarse woody debris; soil organic matter


2006 ◽  
Vol 84 (1) ◽  
pp. 120-132 ◽  
Author(s):  
Rachel S. Botting ◽  
Arthur L. Fredeen

The diversity and abundance of terrestrial lichens, mosses, and liverworts were examined and compared between two ages of forest (old-growth and young second-growth) on two dominant soil types (fine- and coarse-textured soils) in subboreal spruce forests in central British Columbia. Major differences in species composition were found between forest ages, with 30% of species found only in old-growth forest and 21% found only in young second-growth forest. Liverworts were much more common in old-growth sites with half the liverwort species found exclusively in old-growth, and 90% of the recorded liverwort observations occurring there. Different moss species assemblages dominated old-growth and second-growth sites, with much of the terrestrial cover of second-growth sites composed of Polytrichum juniperinum Hedw. Young second-growth forest had higher cover of lichen species than old-growth forest. Lichens and bryophytes used different terrestrial substrates in each forest age, with higher cover of mosses and lichens occurring on woody substrates in old-growth, irrespective of substrate availability. Nonmetric multidimensional scaling ordination clearly separated plots by forest age and also showed soil texture to be a defining variable. Though not statistically significant, there was increased bryophyte diversity on coarse-textured soils and increased lichen cover on fine-textured soils.


2009 ◽  
Vol 39 (5) ◽  
pp. 897-907 ◽  
Author(s):  
Claudette H. Bois ◽  
Darren T. Janzen ◽  
Paul T. Sanborn ◽  
Arthur L. Fredeen

A study was conducted to determine if consideration of ecological site classification in combination with stand age would describe total ecosystem carbon (C) better than consideration of just stand age alone. The research was conducted in the 9250 ha University of Northern British Columbia/The University of British Columbia Aleza Lake Research Forest in central British Columbia. Over three field seasons (2003–2005), 38, 72, and 27 plots were established in mesic, subhygric, and hygric stands, respectively, with stand ages ranging from 5 to 350+ years. Mineral soil C stocks were significantly influenced by moisture regime, where hygric > subhygric > mesic (93, 77, and 65 t C·ha–1, respectively). Mineral soil and forest floor C stocks were not related to stand age, indicating their resilience to partial-cut and clear-cut forest harvesting systems historically implemented throughout the study area. Subhygric stands had the highest total ecosystem C stocks in the Aleza Lake Research Forest, having approximately 18% more C than mesic and hygric stands, principally due to higher mineral soil C stocks (than mesic stands) and improved C sequestration in large trees (over hygric stands). Consideration of ecological site classification in addition to stand age information improved total ecosystem C stock estimates over the use of stand age alone.


2016 ◽  
Vol 46 (12) ◽  
pp. 1459-1473 ◽  
Author(s):  
Line Tau Strand ◽  
Ingeborg Callesen ◽  
Lise Dalsgaard ◽  
Heleen A. de Wit

Relationships between soil C and N stocks and soil formation, climate, and vegetation were investigated in a gridded database connected to the National Forest Inventory in Norway. For mineral soil orders, C and N stocks were estimated to be 11.1–19.3 kg C·m−2 and 0.41–0.78 kg N·m−2, respectively, declining in the following order: Gleysols > Podzols > Brunisols > Regosols. Organic peat-type soils stored, on average, 31.3 kg C·m−2 and 1.10 kg N·m−2, whereas shallow Organic folisols stored, on average, 10.2 kg C·m−2 and 0.34 kg N·m−2. For Norway’s 120 000 km2 of forest, the total of soil C stocks was estimated to be 1.83 Gt C, with a 95% CI of 1.71–1.95 Gt C. Podzolic soils comprise the largest soil group and store approximately 50% of the forest soil C. Sixty percent of the soil C stock in Podzolic soils was stored in the mineral soil, increasing with temperature and precipitation. Poorly drained soil types store approximately 47% of the total forest soil C in Norway. Soils with water saturation have large C stocks mainly in the forest floor, suggesting that they are more susceptible to forest management and environmental change. Soil C stocks under pine and spruce forests were similar, although pine forests had larger C stocks in the forest floor, while spruce forests had the highest C stocks in the mineral soil compartment. C stocks in the forest floor increase from dry to moist ground vegetation, while ground vegetation nutrient classes reflect better the C and N stocks in the mineral soil.


1993 ◽  
Vol 71 (5) ◽  
pp. 977-984 ◽  
Author(s):  
Michael S. Rodway ◽  
Heidi M. Regehr ◽  
Jean-Pierre L. Savard

We compared Marbled Murrelet (Brachyramphus marmoratus) activity levels in May, June, and July 1990 in four habitats in the Queen Charlotte Islands, British Columbia: alpine, old-growth forest at high elevation, old-growth forest at low elevation, and second-growth forest. The number of Marbled Murrelet detections was highest in old-growth forests. In alpine areas, small numbers of murrelet detections were mostly of distant birds flying over low-elevation forest. Numbers of detections were higher in low-elevation than in high-elevation old-growth forests in May and July, but not in June. Proportions of detections within smaller radii of survey stations were higher in low elevation forest in all months. The highest activity levels were associated with old-growth forest stands of large Sitka spruce (Picea sitchensis) and western hemlock (Tsuga heterophylla). The few detections that occurred in second-growth forests were mostly of distant birds. Stations in second-growth forest close to stands of old-growth forest had more frequent detections than stations with no old-growth forest nearby. Our results support the association of Marbled Murrelets with old-growth forests. Limitations of the survey methodology are discussed.


2011 ◽  
Vol 41 (7) ◽  
pp. 1534-1546 ◽  
Author(s):  
Michael Gerzon ◽  
Brad Seely ◽  
Andy MacKinnon

One of the key issues facing forest resource planners is the conservation and recruitment of old-growth characteristics in managed forests. The paucity of long-term data sets in many regions has limited our ability to project the temporal patterns of structural development in second-growth forests. Age-based thresholds have been employed in some jurisdictions, but these lack flexibility and are arbitrary in nature. Here we conduct a chronosequence study consisting of second-growth and old-growth stands in the coastal forests of Vancouver Island, British Columbia, to identify structural attributes that are suitable for quantifying and monitoring the progressive development of old-growth characteristics. The following structural attributes were identified and evaluated in the chronosequence analysis: volume and density of large live stems, standard deviation of stem DBH, density of large-diameter snags, volume of woody debris, and understory vegetation cover. The rate at which old-growth structural characteristics developed in second-growth stands varied considerably, with the earliest reaching levels observed in old-growth stands within 112 years, while most requiring 200 to greater than 250 years. The use of quantifiable measures of old-growth structure will help forest managers plan for the continued protection and recruitment of old-growth structure within managed forest landscapes.


1998 ◽  
Vol 28 (3) ◽  
pp. 390-395 ◽  
Author(s):  
James A Entry ◽  
William H Emmingham

The amount and type of carbon (C) in a forest soil reflects the past balance between C accumulation and loss. In an old-growth forest soil, C is thought to be in dynamic equilibrium between accumulations and losses. Disturbance upsets this equilibrium by altering the microclimate, the amount and type of vegetation growing on a site, and properties that affect organic matter decomposition. We measured total C and forms of soil C in the L, F, and H layers and in the light fraction of soil organic matter in the 0-10 cm of mineral soil in old-, second-, and young-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) soils in the Oregon Coast Range. Total C in L, F, and H layers and in organic material in the top 10 cm of mineral soil in old-growth forests was higher than in young- or second-growth forests. Old-growth forests had a higher lignin concentration and lower concentrations of sugar, hemicellulose, and cellulose in the L, F, and H layers and in the light fraction of organic material than second- or young-growth forests. Old-growth forests had greater amounts of fats, waxes, and oils, sugar, cellulose, and lignin, in the L, F, and H layers per square hectare and greater amounts of hemicellulose, cellulose, and lignin in the light fraction of organic matter in the 0-10 cm of mineral soil per square hectare than young- and second-growth forests. Concentrations of fats, waxes, and oils, sugar, and tannin in the light fraction of organic matter in the 0-10 cm of mineral soil did not differ with forest age.


2017 ◽  
Vol 47 (8) ◽  
pp. 1140-1144 ◽  
Author(s):  
Cindy E. Prescott ◽  
Anya Reid ◽  
Shu Yao Wu ◽  
Marie-Charlotte Nilsson

Mechanical site preparation is assumed to reduce soil C stocks by increasing the rate at which the displaced organic material decomposes, but the evidence is equivocal. We measured rates of C loss of forest-floor material in mesh bags either placed on the surface or buried in the mineral soil at four sites in different regional climates in British Columbia. During the 3-year incubation, buried forest-floor material lost between 5% and 15% more C mass than material on the surface, with the greatest difference occurring at the site with the lowest annual precipitation. Studies of the long-term fate of buried and surface humus are needed to understand the net effects of site preparation on soil C stocks.


2003 ◽  
Vol 33 (11) ◽  
pp. 2193-2201 ◽  
Author(s):  
J DH Spears ◽  
S M Holub ◽  
M E Harmon ◽  
K Lajtha

This study investigated the effect of coarse woody debris (CWD) on mineral soils at the H.J. Andrews Experimental Forest in the central Cascade Range of Oregon, U.S.A. Nutrients in CWD leachates were compared with (i) forest floor (control) leachates, (ii) over a decay chronosequence, and (iii) among CWD of four species. There were few differences among CWD leachates and forest floor leachates. Soils under CWD were warmer but not wetter than control soils. Water-soluble organic carbon was higher in soils under CWD than in controls at 5–15 cm depth (p < 0.02), but soil C concentrations did not differ. Gross N mineralization was faster in control soils. We found no differences in N, P, microbial biomass, Biolog plate assays, or enzyme activity in soils. Nutrient leachate differences among CWD species were small. Differences in solutions and in soils among CWD and controls were largest during the middle decay classes. This study suggests that either (i) CWD has no long-term effect and does not contribute large amounts of organic matter to the soil profile or (ii) the effect of CWD is so prolonged that no spatial affect is noticeable because all soils have been affected by CWD at some time.


Sign in / Sign up

Export Citation Format

Share Document