The temporal development of old-growth structural attributes in second-growth stands: a chronosequence study in the Coastal Western Hemlock zone in British Columbia

2011 ◽  
Vol 41 (7) ◽  
pp. 1534-1546 ◽  
Author(s):  
Michael Gerzon ◽  
Brad Seely ◽  
Andy MacKinnon

One of the key issues facing forest resource planners is the conservation and recruitment of old-growth characteristics in managed forests. The paucity of long-term data sets in many regions has limited our ability to project the temporal patterns of structural development in second-growth forests. Age-based thresholds have been employed in some jurisdictions, but these lack flexibility and are arbitrary in nature. Here we conduct a chronosequence study consisting of second-growth and old-growth stands in the coastal forests of Vancouver Island, British Columbia, to identify structural attributes that are suitable for quantifying and monitoring the progressive development of old-growth characteristics. The following structural attributes were identified and evaluated in the chronosequence analysis: volume and density of large live stems, standard deviation of stem DBH, density of large-diameter snags, volume of woody debris, and understory vegetation cover. The rate at which old-growth structural characteristics developed in second-growth stands varied considerably, with the earliest reaching levels observed in old-growth stands within 112 years, while most requiring 200 to greater than 250 years. The use of quantifiable measures of old-growth structure will help forest managers plan for the continued protection and recruitment of old-growth structure within managed forest landscapes.

1985 ◽  
Vol 15 (3) ◽  
pp. 561-569 ◽  
Author(s):  
K. Klinka ◽  
A. M. Scagel ◽  
P. J. Courtin

A new classification scheme is proposed for managed second-growth forests, which is based upon ecologically equivalent sites rather than purely floristic or structural characteristics of vegetation. For demonstration purposes, six structural (developmental) stages were sampled and classified. The seral stages, listed in increasing age after harvesting are as follows: initial, regeneration, early immature, late immature, mature, and old growth. The results of numerical and tabular analyses suggested the presence of two major floristic groups (seral associations) of the above seral stages: (i) Epilobium – Polytrichum (initial and regeneration seral stages) and (ii) Pseudotsuga – Hylocomium (early immature to old growth seral stages). The Epilobium – Polytrichum seral association was found to represent seral vegetation of regeneration stages on four different site types, all of which are common in southwestern British Columbia.


2002 ◽  
Vol 32 (12) ◽  
pp. 2077-2093 ◽  
Author(s):  
Mireille Desponts ◽  
André Desrochers ◽  
Louis Bélanger ◽  
Jean Huot

This study was undertaken to determine the contribution of old-growth and senescent forest stands regenerated through clear-cutting to the biodiversity of wet boreal fir stands in eastern Quebec because overmature stands are becoming scarce in that region. The study area was located in the Laurentian Mountains north of the city of Québec. The structure and composition of nonvascular plant communities (mosses, hepatica, lichens, and saprophytic fungi) of old-growth forests were compared with those of mature or senescent fir stands harvested 60 years ago. Nonvascular plants have a more uniform structure and a lower diversity in mature than in senescent or old-growth forests. A variety of specialized soil- and wood-inhabiting species and many rare species not observed in mature stands regenerated through clear-cutting are found in the latter. Structural diversity of senescent second-growth fir stands becomes similar to that of old-growth stand because of mortality within the overstory. These structural characteristics favour the development of diversified nonvascular plant communities, especially wood-inhabiting species found on slightly decomposed woody debris and soil-inhabiting species that colonize disturbed soils.[Journal translation]


2005 ◽  
Vol 35 (6) ◽  
pp. 1411-1421 ◽  
Author(s):  
Arthur L Fredeen ◽  
Claudette H Bois ◽  
Darren T Janzen ◽  
Paul T Sanborn

Carbon (C) stocks were assessed for hybrid interior spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.)-dominated upland forests within the Aleza Lake Research Forest in central British Columbia, Canada. Four old-growth (141–250 years old) and four young second-growth (<20 years old) forest plots were established on the two dominant soil texture types, coarse and fine, for a total of 16 plots. Mean total C stocks for old-growth stands ranged from 423 Mg C·ha–1 (coarse) to 324 Mg C·ha–1 (fine), intermediate between Pacific Northwest temperate forests and upland boreal forests. Total C was lower in second-growth stands because of lower tree (mostly large tree stem), forest floor, and woody debris C stocks. In contrast, old-growth forest-floor C stocks ranged from 78 Mg C·ha–1 (coarse) to 35 Mg C·ha–1 (fine), 2.9- and 1.2-fold higher than in corresponding second-growth stands, respectively. Woody debris C stocks in old-growth stands totaled 35 Mg C·ha–1 (coarse) and 31 Mg C·ha–1 (fine), 2.7- and 3.4-fold higher than in second-growth stands, respectively. Mineral soil C to 1.07 m depth was similar across soil type and age-class, with totals ranging from 115 to 106 Mg C·ha–1. Harvesting of old-growth forests in sub-boreal British Columbia lowers total C stocks by 54%–41%.


2004 ◽  
Vol 82 (10) ◽  
pp. 1518-1538 ◽  
Author(s):  
Christine Roberts ◽  
Oluna Ceska ◽  
Paul Kroeger ◽  
Bryce Kendrick

Over 5 years, macrofungi from six habitats in Clayoquot Sound, Vancouver Island, British Columbia, were documented. Habitats were categorized as dune, spruce fringe, old-growth rainforest, second-growth forest, bog, or estuarine. All but the second-growth forest are natural ecosystems. A total of 551 taxa of macrofungi were recorded. Between 17% and 36% of the species in any one habitat were found only in that habitat. The most frequently encountered and ubiquitous species was Craterellus tubaeformis (Fr.) Quel., found in all years, habitats, and sites. Of the 551 taxa, only 28 were found every year, and 308 were found in only 1 year. Rare species that were recorded include Cordyceps ravenelii Berkeley & Curtis, Hygrophorus inocybiformis Smith, and Tricholoma apium Schaeffer in the dunes and Stereopsis humphreyi (Burt) Redhead in the spruce fringe. Similarities between habitats based on taxa in common showed that bog and estuarine habitats had only 9%–17% in common with each other and the other habitats, whereas dune, spruce fringe, and the two forest types shared 21%–31% of their species. Old-growth rainforest yielded approximately 4 times as many species as bog and estuarine habitats, and approximately 1.5 times as many as the other three habitats.Key words: Clayoquot Sound, Vancouver Island, macrofungi, habitats, biodiversity.


2006 ◽  
Vol 84 (1) ◽  
pp. 120-132 ◽  
Author(s):  
Rachel S. Botting ◽  
Arthur L. Fredeen

The diversity and abundance of terrestrial lichens, mosses, and liverworts were examined and compared between two ages of forest (old-growth and young second-growth) on two dominant soil types (fine- and coarse-textured soils) in subboreal spruce forests in central British Columbia. Major differences in species composition were found between forest ages, with 30% of species found only in old-growth forest and 21% found only in young second-growth forest. Liverworts were much more common in old-growth sites with half the liverwort species found exclusively in old-growth, and 90% of the recorded liverwort observations occurring there. Different moss species assemblages dominated old-growth and second-growth sites, with much of the terrestrial cover of second-growth sites composed of Polytrichum juniperinum Hedw. Young second-growth forest had higher cover of lichen species than old-growth forest. Lichens and bryophytes used different terrestrial substrates in each forest age, with higher cover of mosses and lichens occurring on woody substrates in old-growth, irrespective of substrate availability. Nonmetric multidimensional scaling ordination clearly separated plots by forest age and also showed soil texture to be a defining variable. Though not statistically significant, there was increased bryophyte diversity on coarse-textured soils and increased lichen cover on fine-textured soils.


2003 ◽  
Vol 11 (S1) ◽  
pp. S135-S157 ◽  
Author(s):  
M C Feller

This paper synthesizes data extracted from the literature and data collected in various studies by the author on the quantity, characteristics, and functional importance of coarse woody debris (CWD) in the old-growth forests of British Columbia (B.C.). There is little agreement in the literature about the minimum diameter of CWD or the number of decay classes recognized. In western North America, five decay classes are commonly used, but recent studies suggest fewer decay classes are preferable. Comparisons among decay classes and biogeoclimatic zones and subzones in B.C. reveal that quantities and volumes are greatest (up to approximately 60 kg/m2 and approximately 1800 m3/ha, respectively), and CWD persists the longest (sometimes in excess of 1000 years) in the Coastal Western Hemlock (CWH) biogeoclimatic zone. The quantity and ground cover of CWD increase with forest productivity. Persistence of CWD has varied from less than 100 to over 800 years in two coastal (CWH and Mountain Hemlock (MH)) and three interior (Interior Douglas-fir (IDF), Interior Cedar–Hemlock (ICH), and Engelmann Spruce – Subalpine Fir (ESSF)) biogeoclimatic zones. Trends in CWD quantity with forest age in managed coastal B.C. forests suggest a U-shaped curve, with greater quantities occurring in recent cutovers than in old-growth forests, and lowest quantities occurring in middle-aged forests. This may be the normal trend in CWD with forest age, with departures from this trend resulting from disturbance- or environment-specific factors. Relatively large amounts of data exist on the characteristics of CWD in the CWH, IDF, ICH, ESSF, and Boreal White and Black Spruce (BWBS) biogeoclimatic zones, but such data for the Coastal Douglas-fir, Sub-Boreal Pine–Spruce, Sub-Boreal Spruce (SBS), and Spruce–Willow–Birch biogeoclimatic zones appear relatively sparse. There have been few studies of the functional role of CWD in B.C. forests, but those studies that have been completed indicate that CWD is an important habitat component for some plant and animal species. A total of 169 plant species, including >95% of all lichens and liverworts, were found to grow on CWD in old-growth forests in the CWH, MH, IDF, ICH, and ESSF biogeoclimatic zones. One third of these species were restricted to CWD. Studies in several biogeoclimatic zones have found that CWD provided preferred habitat for and was associated with higher populations of some small animal species, such as shrews, some voles, and some salamanders, in old-growth forests, but the effects varied with species and biogeoclimatic zone. The nutrient cycling role of CWD is not yet well known, but it currently appears to be relatively insignificant in B.C. old-growth forests. Although it has been considered that CWD could increase mineral soil acidification and eluviation, no evidence for this was found in a study of the CWH, MH, IDF, ICH, ESSF, BWBS, and SBS biogeoclimatic zones. Future studies of the functional role of CWD should consider both scale (square metre vs. hectare) and temporal (changes in CWD with forest age) issues, as studies including these are sparse and both may be important. Key words: biogeoclimatic zones, British Columbia, coarse woody debris, old-growth forests.


2015 ◽  
Author(s):  
Karin S. Fassnacht ◽  
Dustin R. Bronson ◽  
Brian J. Palik ◽  
Anthony W. D'Amato ◽  
Craig Lorimer ◽  
...  

1992 ◽  
Vol 49 (2) ◽  
pp. 337-346 ◽  
Author(s):  
John S. Richardson

The dynamics of coarse particulate organic matter (CPOM) were studied for 2 yr in three second-order streams in the Coast Range of British Columbia. Estimates of direct litterfall ranged from 201 to 481 g ash-free dry mass∙m−2∙yr−1. The magnitude of deciduous leaf litter input was similar among streams. Input of conifer needles to a stream with an old-growth canopy was higher than in two streams which drained second-growth forests. There was over a 60-fold seasonal change in deciduous leaf standing stock, but woody debris and total CPOM showed less seasonal variation. Decomposition of alder leaf packs in two of the streams showed a large temperature-dependent component and significant differences between streams, with the more retentive stream having lower rates of decomposition. From estimates of input and decay rates, models of leaf loss were made to predict benthic standing stocks of deciduous leaf litter. Comparisons of the model predictions with actual measures indicate that 70–94% of leaf material was unaccounted for and presumably lost from the study reach by export, floodplain deposition, and burial. The seasonal changes in standing stock of CPOM emphasize the variation in food supply potentially available to detritivorous stream organisms.


Rangifer ◽  
1990 ◽  
Vol 10 (3) ◽  
pp. 139 ◽  
Author(s):  
Susan K. Stevenson

Habitat management for woodland caribou (Rangifer tarandus caribou) in southeastern British Columbia has generally focussed on protecting old-growth forests from logging. As that strategy becomes more difficult to maintain, biologists are beginning to explore opportunities to manage second-growth stands to provide arboreal lichens and other habitat resources important to caribou. Special harvesting and stand management practices are being developed and formulated into strategies for maintaining caribou populations in managed stands.


Sign in / Sign up

Export Citation Format

Share Document