Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach

2006 ◽  
Vol 36 (6) ◽  
pp. 1461-1474 ◽  
Author(s):  
Marcos Barrio Anta ◽  
Fernando Castedo Dorado ◽  
Ulises Diéguez-Aranda ◽  
Juan G Álvarez González ◽  
Bernard R Parresol ◽  
...  

A basal area growth system for single-species, even-aged maritime pine (Pinus pinaster Ait.) stands in Galicia (northwestern Spain) was developed from data of 212 plots measured between one and four times. Six dynamic equations were considered for analysis, and both numerical and graphical methods were used to compare alternative models. The double cross-validation approach was used to assess the predictive ability of the models. The data were best described by a dynamic equation derived from the Korf growth function using the generalized algebraic difference approach (GADA) by considering two parameters to be site specific. The equation was fitted in one stage using the base-age-invariant dummy variables method. In addition, the system incorporates a function for predicting initial stand basal area, in which the site-related variable was expressed as a power function of site index. This function can be used to establish the starting point for the projection equation when no inventory data are available. The two equations are compatible. The effect of thinning on basal area growth was examined; the results showed that there was no need to use a different equation to reliably predict postthinning basal area development. The nonlinear extra sum of squares method indicated differences in the model parameters for the two ecoregions (coastal and interior) defined for this species in the area of study.

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 249 ◽  
Author(s):  
José Riofrío ◽  
Miren del Río ◽  
Douglas Maguire ◽  
Felipe Bravo

Models that incorporate known species-mixing effects on tree growth are essential tools to properly design silvicultural guidelines for mixed-species stands. Here, we developed generalized height–diameter (h-d) and basal area growth models for mixed stands of two main forest species in Spain: Scots pine (Pinus sylvestris L.) and Maritime pine (Pinus pinaster Ait.). Mixed-effects models were fitted from plot measurement and tree rings data from 726 Scots pine and 693 Maritime pine trees from mixed and pure stands in the Northern Iberian Range in Spain, with the primary objective of representing interactions between the species where they are interspersed in mixtures of varying proportions. An independent dataset was used to test the performance of the h-d models against models previously fitted for monospecific stands of both species. Basal area increment models were evaluated using a 10-fold block cross-validation procedure. We found that species mixing had contrasting effects on the species in both models. In h-d models, the species-mixing proportion determined the effect of species interactions. Basal area growth models showed that interspecific competition was influential only for Maritime pine; however, these effects differed depending on the mode of competition. For Scots pine, tree growth was not restricted by interspecies competition. The combination of mixed-effect models and the inclusion of parameters expressing species-mixing enhanced estimates of tree height and basal area growth compared with the available models previously developed for pure stands. Although the species-mixing effects were successfully represented in the fitted models, additional model components for accurately simulating the stand dynamics of mixtures with Scots pine and Maritime pine and other species mixtures require similar model refinements. Upon the completion of analyses required for these model refinements, the degree of improvement in simulating growth in species mixtures, including the effects of different management options, can be evaluated.


2007 ◽  
Vol 64 (6) ◽  
pp. 609-619 ◽  
Author(s):  
Fernando Castedo-Dorado ◽  
Ulises Diéguez-Aranda ◽  
Marcos Barrio-Anta ◽  
Juan Gabriel Álvarez-Gonzàlez

1988 ◽  
Vol 5 (3) ◽  
pp. 221-222
Author(s):  
Arlyn W. Perkey ◽  
Kenneth L. Carvell

1973 ◽  
Vol 3 (4) ◽  
pp. 495-500 ◽  
Author(s):  
James A. Moore ◽  
Carl A. Budelsky ◽  
Richard C. Schlesinger

A new competition index, modified Area Potentially Available (APA), was tested in a complex unevenaged stand composed of 19 different hardwood species. APA considers tree size, spatial distribution, and distance relationships in quantifying intertree competition and exhibits a strong correlation with individual tree basal area growth. The most important characteristic of APA is its potential for evaluating silvicultural practices.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 409
Author(s):  
Gheorghe Marin ◽  
Vlad C. Strimbu ◽  
Ioan V. Abrudan ◽  
Bogdan M. Strimbu

In many countries, National Forest Inventory (NFI) data is used to assess the variability of forest growth across the country. The identification of areas with similar growths provides the foundation for development of regional models. The objective of the present study is to identify areas with similar diameter and basal area growth using increment cores acquired by the NFI for the three main Romanian species: Norway spruce (Picea abies L. Karst), European beech (Fagus sylvatica L.), and Sessile oak (Quercus petraea (Matt.) Liebl.). We used 6536 increment cores with ages less than 100 years, a total of 427,635 rings. The country was divided in 21 non-overlapping ecoregions based on geomorphology, soil, geology and spatial contiguousness. Mixed models and multivariate analyses were used to assess the differences in annual dimeter at breast height and basal area growth among ecoregions. Irrespective of the species, the mixed models analysis revealed significant differences in growth between the ecoregions. However, some ecoregions were similar in terms of growth and could be aggregated. Multivariate analysis reinforced the difference between ecoregions and showed no temporal grouping for spruce and beech. Sessile oak growth was separated not only by ecoregions, but also by time, with some ecoregions being more prone to draught. Our study showed that countries of median size, such as Romania, could exhibit significant spatial differences in forest growth. Therefore, countrywide growth models incorporate too much variability to be considered operationally feasible. Furthermore, it is difficult to justify the current growth and yield models as a legal binding planning tool.


2000 ◽  
Vol 24 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Michael M. Huebschmann ◽  
Lawrence R. Gering ◽  
Thomas B. Lynch ◽  
Onesphore Bitoki ◽  
Paul A. Murphy

Abstract A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and merchantable heights, and total and merchantable volumes and weights of shortleaf pine trees; and (2) stand-level equations that predict hardwood ingrowth, basal-area growth, and mortality. These equations were combined into a computer simulation program that forecasts future states of uneven-aged shortleaf pine stands. Based on comparisons of observed and predicted stand conditions in shortleaf pine permanent forest inventory plots and examination of the growth patterns of hypothetical stands, the simulator makes acceptable forecasts of stand attributes. South. J. Appl. For. 24(2):112-120.


2002 ◽  
Vol 32 (7) ◽  
pp. 1232-1243 ◽  
Author(s):  
Nathan J Poage ◽  
John C Tappeiner, II

Diameter growth and age data collected from stumps of 505 recently cut old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees at 28 sample locations in western Oregon (U.S.A.) indicated that rapid early and sustained growth of old Douglas-fir trees were extremely important in terms of attaining large diameters at ages 100–300 years. The diameters of the trees at ages 100–300 years (D100–D300) were strongly, positively, and linearly related to their diameters and basal area growth rates at age 50 years. Average periodic basal area increments (PAIBA) of all trees increased for the first 30–40 years and then plateaued, remaining relatively high and constant from age 50 to 300 years. Average PAIBA of the largest trees at ages 100–300 years were significantly greater by age 20 years than were those of smaller trees at ages 100–300 years. The site factors province, site class, slope, aspect, elevation, and establishment year accounted for little of the variation observed in basal area growth at age 50 years and D100–D300. The mean age range for old-growth Douglas-fir at the sample locations was wide (174 years). The hypothesis that large-diameter old-growth Douglas-fir developed at low stand densities was supported by these observations.


2018 ◽  
Vol 42 (3) ◽  
Author(s):  
Ugur Akbas ◽  
Muammer SENYURT

ABSTRACT In this study, it is aimed that the dynamic site index models were developed for Crimean Pine stands in Sarikaya-Cankiri forests located in middle northern Turkey. The data for this study are 153 sample trees obtained from the Crimean Pine stands. In modeling relationships between height and age of dominant or co-dominant trees, some dynamic site index equations such as Chapman-Richards (M1, M2, M3), Lundqvist (M4 and M6), Hossfeld (M5), Weibull (M7) and Schumacher (M8) based on the Generalized Algebraic Difference Approach (GADA) were used. The estimations for these eight-dynamic site index model parameters with well as various statistical values were obtained using the nonlinear regression technique. Among these equations, the Chapman-Richards’s equation, M3, was determined to be the most successful model, with accounted for 89.03 % of the total variance in height-age relationships with MSE: 1.7633, RMSE: 1.3279, SSE: 1165.6, Bias: -0.0380. After determination of the best predictive model, ARMA (1, 1) autoregressive prediction technique was used to account autocorrelation problems for time-series height measurements. When ARMA autoregressive prediction technique was applied to the Chapman-Richards function for solving autocorrelation problem, these success statistics were improved as SSE: 868.7, MSE: 1.3183, RMSE: 1.1482, Bias: -0.06369, R2: 0.918. Also, Durbin-Watson statistics displayed that autocorrelation problem was solved by the use of ARMA autoregressive prediction technique; DW test value=1.99, DW<P=0.5622, DW>P=0.4378. The dynamic site index model that was developed has provided results compatible with the growth characteristics expected in the modeling of height-age relations, such as polymorphism, multiple asymptote, and base-age invariance.


Sign in / Sign up

Export Citation Format

Share Document