Assessment of forest GPP variations in central Italy

2007 ◽  
Vol 37 (10) ◽  
pp. 1944-1953 ◽  
Author(s):  
A. Rodolfi ◽  
M. Chiesi ◽  
G. Tagliaferri ◽  
P. Cherubini ◽  
F. Maselli

A debate is in progress concerning the possible effects of climate changes on the primary production of both natural and artificial ecosystems. The current investigation builds on the hypothesis that trends of increasing air temperature observed in several Italian regions should positively affect productivity of mountain forest ecosystems. Temperature rise in the Mugello valley (central Italy) in the period 1986–2001 was first confirmed by the analysis of data from a local station. The effects of this rise on the productivity of deciduous forest ecosystems (dominated by beech, Fagus sylvatica L.) were then analysed through estimates of the fraction of absorbed photosynthetically active radiation (FAPAR) derived from the US National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer satellite normalized difference vegetation index (NDVI) data. The use of a simplified parametric model (C-Fix) then allowed the combination of these FAPAR estimates with meteorological data (temperature and radiation) to produce annual values of forest gross primary productivity (GPP). Finally, validation of these GPP estimates was carried out by a comparison with dendrochronological measurements taken in the study forests. Because tree measurements were affected by external factors not exclusively related to forest GPP (stand aging, management practices, etc.), the comparison gave positive results only after applying a detrending operation to both series of annual GPP estimates and dendrochronological data. These results are a first indication that the rise in temperature that has occurred in Italy in the last decades has positively affected the productivity of mountain forest ecosystems.

2018 ◽  
Author(s):  
Anne J. Hoek van Dijke ◽  
Kaniska Mallick ◽  
Adriaan J. Teuling ◽  
Martin Schlerf ◽  
Miriam Machwitz ◽  
...  

Abstract. There is a need for a better understanding of the link between vegetation characteristics and tree transpiration to facilitate satellite derived transpiration estimation. Many studies use the normalized difference vegetation index (NDVI), a proxy for tree biophysical characteristics, to estimate evapotranspiration. In this study we investigated the link between sap velocity and 30 m resolution Landsat derived NDVI for twenty days during two contrasting precipitation years in a temperate deciduous forest catchment. Sap velocity was measured in the Attert catchment in Luxembourg in 25 plots of 20 × 20 m covering three geologies with sensors installed in 2–4 trees per plot. The results show that sap velocity and NDVI were significantly positively correlated in April, i.e., NDVI successfully captured the pattern of sap velocity during the phase of green-up. After green-up, a significant negative correlation was found during half of the studied days. During a dry period, sap velocity was uncorrelated to NDVI, but influenced by geology and aspect. In summary, in our study area, the correlation between sap velocity and NDVI was not constant, but varied with phenology and water availability. The same behaviour was found for the Enhanced Vegetation Index (EVI). This suggests that methods using NDVI or EVI to predict small-scale variability in (evapo)transpiration should be carefully applied and that NDVI and EVI cannot be used to scale sap velocity to stand level transpiration in temperate forest ecosystems.


2019 ◽  
Vol 23 (4) ◽  
pp. 2077-2091 ◽  
Author(s):  
Anne J. Hoek van Dijke ◽  
Kaniska Mallick ◽  
Adriaan J. Teuling ◽  
Martin Schlerf ◽  
Miriam Machwitz ◽  
...  

Abstract. Understanding the link between vegetation characteristics and tree transpiration is a critical need to facilitate satellite-based transpiration estimation. Many studies use the Normalized Difference Vegetation Index (NDVI), a proxy for tree biophysical characteristics, to estimate evapotranspiration. In this study, we investigated the link between sap velocity and 30 m resolution Landsat-derived NDVI for 20 days during 2 contrasting precipitation years in a temperate deciduous forest catchment. Sap velocity was measured in the Attert catchment in Luxembourg in 25 plots of 20×20 m covering three geologies with sensors installed in two to four trees per plot. The results show that, spatially, sap velocity and NDVI were significantly positively correlated in April, i.e. NDVI successfully captured the pattern of sap velocity during the phase of green-up. After green-up, a significant negative correlation was found during half of the studied days. During a dry period, sap velocity was uncorrelated with NDVI but influenced by geology and aspect. In summary, in our study area, the correlation between sap velocity and NDVI was not constant, but varied with phenology and water availability. The same behaviour was found for the Enhanced Vegetation Index (EVI). This suggests that methods using NDVI or EVI to predict small-scale variability in (evapo)transpiration should be carefully applied, and that NDVI and EVI cannot be used to scale sap velocity to stand-level transpiration in temperate forest ecosystems.


2021 ◽  
Vol 7 (8) ◽  
pp. 587
Author(s):  
Danielle Hamae Yamauchi ◽  
Hans Garcia Garces ◽  
Marcus de Melo Teixeira ◽  
Gabriel Fellipe Barros Rodrigues ◽  
Leila Sabrina Ullmann ◽  
...  

Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls’ and armadillos’ burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls’ burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities’ structures.


2021 ◽  
Author(s):  
Harsh Kamath ◽  
Chanchal Chauhan ◽  
Sameer Mishra ◽  
Aariz Ahmed ◽  
Raman Srikanth

<p>The upper Hunter Valley region in New South Wales (NSW), Australia has several open-cast coal mines, which supply coal to two large thermal power plants (TPPs) in the area, beside the export market. Long-term Particulate Matter (PM) pollutants and meteorological measurements are recorded by a network of 13 NSW government-owned continuous monitoring stations in the upper Hunter Valley region. The Ramagundam area in the state of Telangana, India has similar pollution source characteristics (coal mines and TPPs), but PM pollutant measurements are largely carried out with manual monitoring stations at 24-hour intervals, not more than twice a week. As the coal and overburden excavation from open-cast coal mines and stack emissions from TPPs lead to local PM pollution, we have used MODIS-MAIAC Aerosol Optical Depth (AOD) at 550 nm and Normalized Difference Vegetation Index (NDVI) along with the local meteorological data such as ambient temperature, relative humidity, wind speed and direction to model PM10 and PM2.5 at the upper Hunter Valley and Ramagundam regions. Our model can explain about 60% of variation in PM10 (p-value < 0.0001), while a similar model is able to explain about 75% of the variation in the PM2.5 (p-value < 0.0001). We will extend our model results from Hunter Valley to Ramagundam area and comment on the potential of using geospatial products such as AOD as a proxy to ground-based pollution measurements in developing countries such as India, where pollution data is scarce.</p>


2018 ◽  
pp. 41-46
Author(s):  
Adlin Dancheva

In this paper the application of Remote Sensing and GIS as a means of performing aero – space monitoring of forest ecosystems dynamics is being considered. The purpose of this work is to create a model for monitoring the dynamic of forest ecosystems, based on Remote Sensing and GIS. The results of eco-monitoring can be used to update plans and policies for forest ecosystem management. The territory of Vrachanski Balkan Nature park was chosen as the subject of research as there is a certain anthropogenic pressure there. The results presented are obtained by spatial-time analysis of certain aerospace data indices. To carry out the study optical satellite images were used, on the basics of which three indices were calculated: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Greenness Index (NDGI). A comparative analysis has been created and results of the degree of correlation between the different indices are presented, as well as indicators from the different test areas and related changes in the individual points in time. The results of the survey aim to assess the dynamics and condition of the forest vegetation on the territory of Vrachanski Balkan Nature park and can be utilised in activities related to monitoring, mapping and forest management.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Alemayehu Abera ◽  
Teshome Yirgu ◽  
Abera Uncha

Abstract Background Resettlement has been conceived as a viable solution to the continual impoverishment and destitution of Ethiopian rural communities. However, it has considerable impacts on natural resources of the environment at destination areas. This study was carried out to evaluate impact of resettlement scheme on vegetation cover and its implications on conservation in Chewaka district of Ethiopia. Methods The study utilized ArcGIS10.3, ERDAS Imagine 9.1, Landsat imageries of 2000, 2009, 2018 and socio-economic data to analyze the LULC of the district. Normalized Difference Vegetation Index was employed to detect vegetation cover changes of the area. The study was conducted on the seven kebeles of Chewaka district and the total households of the sample kebeles are 3340. Through multistage sampling procedure a total of 384 households were selected from sample kebeles. Data were collected using questionnaires, GPS, interviews, focus group discussions and field observations. The collected data were analyzed both quantitatively and qualitatively. Results The results showed that Chewaka district has undergone substantial LULC change since population resettlement in the area. A rapid reduction of woodland (34.6%), forest (59.9%), grassland (50.5%) and bareland (46.8%) took place between 2000 and 2018, while built-up areas and cultivated lands have expanded at an average rate of 90.7 and 1515.7 ha/year respectively. The results of NDVI revealed that the extent of dense and sparse vegetation cover have decreased by 26.1% and 20.6% respectively, whereas non-vegetation cover has increased by 14,340.2 ha during the study period. It was found that rapid population growth following resettlement program, farmland and settlement expansion, deforestation, human-induced forest fire, lack of land use plan, unwise utilization and low management practices were the major factors that underpin the observed changes in the area. Conclusions Resettlement scheme has resulted in the depletion and dynamics of vegetation cover in Chewaka district. Therefore, the study suggests urgent attention on conservation of the remaining vegetation resources for sustainable utilization.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1364 ◽  
Author(s):  
Spiliotopoulos ◽  
Loukas

The objective of the current study was the investigation of specific relationships between crop coefficients and vegetation indices (VI) computed at the water-limited environment of Lake Karla Watershed, Thessaly, in central Greece. A Mapping ET (evapotranspiration) at high Resolution and with Internalized Calibration (METRIC) model was used to derive crop coefficient values during the growing season of 2012. The proposed methodology was developed using medium resolution Landsat 7 ETM+ images and meteorological data from a local weather station. Cotton, sugar beets, and corn fields were utilized. During the same period, spectral signatures were obtained for each crop using the field spectroradiometer GER1500 (Spectra Vista Corporation, NY, U.S.A.). Relative spectral responses (RSR) were used for the filtering of the specific reflectance values giving the opportunity to match the spectral measurements with Landsat ETM+ bands. Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Enhanced Vegetation Index 2 (EVI2) were then computed, and empirical relationships were derived using linear regression analysis. NDVI, SAVI, and EVI2 were tested separately for each crop. The resulting equations explained those relationships with a very high R2 value (>0.86). These relationships have been validated against independent data. Validation using a new image file after the experimental period gives promising results, since the modeled image file is similar in appearance to the initial one, especially when a crop mask is applied. The CROPWAT model supports those results when using the new crop coefficients to estimate the related crop water requirements. The main benefit of the new approach is that the derived relationships are better adjusted to the crops. The described approach is also less time-consuming because there is no need for atmospheric correction when working with ground spectral measurements.


2019 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Chaobin Zhang ◽  
Ying Zhang ◽  
Zhaoqi Wang ◽  
Jianlong Li ◽  
Inakwu Odeh

Both vegetation phenology and net primary productivity (NPP) are crucial topics under the background of global change, but the relationships between them are far from clear. In this study, we quantified the spatial-temporal vegetation start (SOS), end (EOS), and length (LOS) of the growing season and NPP for the temperate grasslands of China based on a 34-year time-series (1982–2015) normalized difference vegetation index (NDVI) derived from global inventory modeling and mapping studies (GIMMS) and meteorological data. Then, we demonstrated the relationships between NPP and phenology dynamics. The results showed that more than half of the grasslands experienced significant changes in their phenology and NPP. The rates of their changes exhibited spatial heterogeneity, but their phenological changes could be roughly divided into three different clustered trend regions, while NPP presented a polarized pattern that increased in the south and decreased in the north. Different trend zones’ analyses revealed that phenology trends accelerated after 1997, which was a turning point. Prolonged LOS did not necessarily increase the current year’s NPP. SOS correlated with the NPP most closely during the same year compared to EOS and LOS. Delayed SOS contributed to increasing the summer NPP, and vice versa. Thus, SOS could be a predictor for current year grass growth. In view of this result, we suggest that future studies should further explore the mechanisms of SOS and plant growth.


2019 ◽  
Vol 11 (21) ◽  
pp. 2534 ◽  
Author(s):  
Willibroad Gabila Buma ◽  
Sang-Il Lee

As the world population keeps increasing and cultivating more land, the extraction of vegetation conditions using remote sensing is important for monitoring land changes in areas with limited ground observations. Water supply in wetlands directly affects plant growth and biodiversity, which makes monitoring drought an important aspect in such areas. Vegetation Temperature Condition Index (VTCI) which depends on thermal stress and vegetation state, is widely used as an indicator for drought monitoring using satellite data. In this study, using clear-sky Landsat multispectral images, VTCI was derived from Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI). Derived VTCI was used to observe the drought patterns of the wetlands in Lake Chad between 1999 and 2018. The proportion of vegetation from WorldView-3 images was later introduced to evaluate the methods used. With an overall accuracy exceeding 90% and a kappa coefficient greater than 0.8, these methods accurately acquired vegetation training samples and adaptive thresholds, allowing for accurate estimations of the spatially distributed VTCI. The results obtained present a coherent spatial distribution of VTCI values estimated using LST and NDVI. Most areas during the study period experienced mild drought conditions, though severe cases were often seen around the northern part of the lake. With limited in-situ data in this area, this study presents how VTCI estimations can be developed for drought monitoring using satellite observations. This further shows the usefulness of remote sensing to improve the information about areas that are difficult to access or with poor availability of conventional meteorological data.


2021 ◽  
Vol 13 (22) ◽  
pp. 4592
Author(s):  
Steye L. Verhoeve ◽  
Tamara Keijzer ◽  
Rehema Kaitila ◽  
Juma Wickama ◽  
Geert Sterk

East Africa is comprised of many semi-arid lands that are characterized by insufficient rainfall and the frequent occurrence of droughts. Drought, overgrazing and other impacts due to human activity may cause a decline in vegetation cover, which may result in land degradation. This study aimed to assess drought occurrence, vegetation cover changes and vegetation resilience in the Monduli and Longido districts in northern Tanzania. Satellite-derived data of rainfall, temperature and vegetation cover were used. Monthly precipitation (CenTrends v1.0 extended with CHIRPS2.0) and monthly mean temperatures (CRU TS4.03) were collected for the period of 1940–2020. Eight-day maximum value composite data of the normalized difference vegetation index (NDVI) (NOAA CDR—AVHRR) were obtained for the period of 1981–2020. Based on the meteorological data, trends in rainfall, temperature and drought were determined. The NDVI data were used to determine changes in vegetation cover and vegetation resilience related to the occurrence of drought. Rainfall did not significantly change over the period of 1940–2020, but mean monthly temperatures increased by 1.06 °C. The higher temperatures resulted in more frequent and prolonged droughts due to higher potential evapotranspiration rates. Vegetation cover declined by 9.7% between 1981 and 2020, which is lower than reported in several other studies, and most likely caused by the enhanced droughts. Vegetation resilience on the other hand is still high, meaning that a dry season or year resulted in lower vegetation cover, but a quick recovery was observed during the next normal or above-normal rainy season. It is concluded that despite the overall decline in vegetation cover, the changes have not been as dramatic as earlier reported, and that vegetation resilience is good in the study area. However, climate change predictions for the area suggest the occurrence of more droughts, which might lead to further vegetation cover decline and possibly a shift in vegetation species to more drought-prone species.


Sign in / Sign up

Export Citation Format

Share Document