scholarly journals Vegetation Resilience under Increasing Drought Conditions in Northern Tanzania

2021 ◽  
Vol 13 (22) ◽  
pp. 4592
Author(s):  
Steye L. Verhoeve ◽  
Tamara Keijzer ◽  
Rehema Kaitila ◽  
Juma Wickama ◽  
Geert Sterk

East Africa is comprised of many semi-arid lands that are characterized by insufficient rainfall and the frequent occurrence of droughts. Drought, overgrazing and other impacts due to human activity may cause a decline in vegetation cover, which may result in land degradation. This study aimed to assess drought occurrence, vegetation cover changes and vegetation resilience in the Monduli and Longido districts in northern Tanzania. Satellite-derived data of rainfall, temperature and vegetation cover were used. Monthly precipitation (CenTrends v1.0 extended with CHIRPS2.0) and monthly mean temperatures (CRU TS4.03) were collected for the period of 1940–2020. Eight-day maximum value composite data of the normalized difference vegetation index (NDVI) (NOAA CDR—AVHRR) were obtained for the period of 1981–2020. Based on the meteorological data, trends in rainfall, temperature and drought were determined. The NDVI data were used to determine changes in vegetation cover and vegetation resilience related to the occurrence of drought. Rainfall did not significantly change over the period of 1940–2020, but mean monthly temperatures increased by 1.06 °C. The higher temperatures resulted in more frequent and prolonged droughts due to higher potential evapotranspiration rates. Vegetation cover declined by 9.7% between 1981 and 2020, which is lower than reported in several other studies, and most likely caused by the enhanced droughts. Vegetation resilience on the other hand is still high, meaning that a dry season or year resulted in lower vegetation cover, but a quick recovery was observed during the next normal or above-normal rainy season. It is concluded that despite the overall decline in vegetation cover, the changes have not been as dramatic as earlier reported, and that vegetation resilience is good in the study area. However, climate change predictions for the area suggest the occurrence of more droughts, which might lead to further vegetation cover decline and possibly a shift in vegetation species to more drought-prone species.

2017 ◽  
pp. 29 ◽  
Author(s):  
F. Marini ◽  
M. Santamaría ◽  
P. Oricchio ◽  
C. M. Di Bella ◽  
A. Basualdo

<p>Using regression analysis between actual evapotranspiration (ETR) and potential evapotranspiration (ETP) values obtained in seven meteorological observatories and remote sensing derived data from MODIS images (Surface temperature and Normalized Difference Vegetation Index - NDVI) models for estimating ETR and ETP in the southwest of the Buenos Aires Province (Argentina) were developed for the 2000–2014 period. Both models were satisfactorily evaluated in the meteorological observatories used. A regression model was adjusted for ETR with a determination coefficient of 0,6959. Regression model was nonlinear in the case of the ETP variable with a determination coefficient of 0,8409. The individual regression analysis for each meteorological observatories explicate the behavior of the regression for the total data set of ETR and ETP. According to these results, the utility of remote sensing in determination of ETR and ETP in areas without meteorological data was confirmed.</p>


2017 ◽  
Author(s):  
Homin Kim ◽  
Jagath J. Kaluarachchi

Abstract. The Granger and Gray (GG) model, which uses the complementary relationship for estimating evapotranspiration (ET), is a simple approach requiring only commonly available meteorological data; however, most complementary relationship models decrease in predictive power with increasing aridity. In this study, a previously developed modified GG model using the vegetation index is further improved to estimate ET under a variety of climatic conditions. This updated GG model, GG-NDVI, includes Normalized Difference Vegetation Index (NDVI), precipitation, and potential evapotranspiration using the Budyko framework. The Budyko framework is consistent with the complementary relationship and performs well under dry conditions. We validated the GG-NDVI model under operational conditions with the commonly used remote sensing-based Operational Simplified Surface Energy Balance (SSEBop) model at 60 Eddy Covariance AmeriFlux sites located in the USA. Results showed that the Root Mean Square Error (RMSE) for GG-NDVI ranged between 15 and 20 mm month−1, which is lower than for SSEBop every year. Although the magnitude of agreement seems to vary from site to site and from season to season, the occurrences of RMSE less than 20 mm month−1 with the proposed model are more frequent than with SSEBop in both dry and wet sites. This study also found an inherent limitation of the complementary relationship under moist conditions, indicating the relationship is not symmetrical as previously suggested. A nonlinear correction function was incorporated into GG-NDVI to overcome this limitation. The resulting Adjusted GG-NDVI produced much lower RMSE values, along with lower RMSE across more sites, as compared to measured ET and SSEBop.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2021 ◽  
Author(s):  
Harsh Kamath ◽  
Chanchal Chauhan ◽  
Sameer Mishra ◽  
Aariz Ahmed ◽  
Raman Srikanth

&lt;p&gt;The upper Hunter Valley region in New South Wales (NSW), Australia has several open-cast coal mines, which supply coal to two large thermal power plants (TPPs) in the area, beside the export market. Long-term Particulate Matter (PM) pollutants and meteorological measurements are recorded by a network of 13 NSW government-owned continuous monitoring stations in the upper Hunter Valley region. The Ramagundam area in the state of Telangana, India has similar pollution source characteristics (coal mines and TPPs), but PM pollutant measurements are largely carried out with manual monitoring stations at 24-hour intervals, not more than twice a week. As the coal and overburden excavation from open-cast coal mines and stack emissions from TPPs lead to local PM pollution, we have used MODIS-MAIAC Aerosol Optical Depth (AOD) at 550 nm and Normalized Difference Vegetation Index (NDVI) along with the local meteorological data such as ambient temperature, relative humidity, wind speed and direction to model PM10 and PM2.5 at the upper Hunter Valley and Ramagundam regions. Our model can explain about 60% of variation in PM10 (p-value &lt; 0.0001), while a similar model is able to explain about 75% of the variation in the PM2.5 (p-value &lt; 0.0001). We will extend our model results from Hunter Valley to Ramagundam area and comment on the potential of using geospatial products such as AOD as a proxy to ground-based pollution measurements in developing countries such as India, where pollution data is scarce.&lt;/p&gt;


2021 ◽  
Vol 30 (1) ◽  
pp. 148-158
Author(s):  
Haneen Adeeb ◽  
Yaseen Al-Timimi

Soil salinity is one of the most important problems of land degradation, that threatening the environmental, economic and social system. The aim of this study to detect the changes in soil salinity and vegetation cover for Diyala Governorate over the period from 2005 to 2020, through the use of remote sensing techniques and geographic information system. The normalized difference vegetation index (NDVI) and salinity index (SI) were used, which were applied to four of the Landsat ETM+ and Landsat OLI satellite imagery. The results showed an increase in soil salinity from 7.27% in the period 2005–2010 to 27.03% in 2015–2020, as well as an increase in vegetation from 10% to 24% in the same period. Also the strong inverse correlation between the NDVI and the SI showed that vegetation is significantly affected and directly influenced by soil salinity changes


2018 ◽  
Vol 7 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Amal Y. Aldhebiani ◽  
Mohamed Elhag ◽  
Ahmad K. Hegazy ◽  
Hanaa K. Galal ◽  
Norah S. Mufareh

Abstract. Wadi Yalamlam is known as one of the significant wadis in the west of Saudi Arabia. It is a very important water source for the western region of the country. Thus, it supplies the holy places in Mecca and the surrounding areas with drinking water. The floristic composition of Wadi Yalamlam has not been comprehensively studied. For that reason, this work aimed to assess the wadi vegetation cover, life-form presence, chorotype, diversity, and community structure using temporal remote sensing data. Temporal datasets spanning 4 years were acquired from the Landsat 8 sensor in 2013 as an early acquisition and in 2017 as a late acquisition to estimate normalized difference vegetation index (NDVI) changes. The wadi was divided into seven stands. Stands 7, 1, and 3 were the richest with the highest Shannon index values of 2.98, 2.69, and 2.64, respectively. On the other hand, stand 6 has the least plant biodiversity with a Shannon index of 1.8. The study also revealed the presence of 48 different plant species belonging to 24 families. Fabaceae (17 %) and Poaceae (13 %) were the main families that form most of the vegetation in the study area, while many families were represented by only 2 % of the vegetation of the wadi. NDVI analysis showed that the wadi suffers from various types of degradation of the vegetation cover along with the wadi main stream.


Author(s):  
Román Alejandro Canul-Turriza ◽  
Francisco Javier Barrera-Lao ◽  
Gabriela Patricia Aldana Narváez

This paper presents the identification of heat islands in the city of San Francisco de Campeche, period 1990 - 2020 and their relationship with changes in the vegetation cover areas. To identify the heat islands in the city, 6 Landsat 5 (TM), 7 (TM) and 8 (OIL) images were obtained from the USGS database (http://earthexplorer.usgs.gov/). In geographic information software, soil temperature was calculated from a mathematical algorithm applied to thermal infrared bands 6 and 10, in addition, the Normalized Difference Vegetation Index (NDVI) was calculated, in order to find a relationship between changes in temperature and vegetation cover. It was found that the green areas have reduced their surface by more than 50% and the soil temperature has increased up to 7 ° C


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Alemayehu Abera ◽  
Teshome Yirgu ◽  
Abera Uncha

Abstract Background Resettlement has been conceived as a viable solution to the continual impoverishment and destitution of Ethiopian rural communities. However, it has considerable impacts on natural resources of the environment at destination areas. This study was carried out to evaluate impact of resettlement scheme on vegetation cover and its implications on conservation in Chewaka district of Ethiopia. Methods The study utilized ArcGIS10.3, ERDAS Imagine 9.1, Landsat imageries of 2000, 2009, 2018 and socio-economic data to analyze the LULC of the district. Normalized Difference Vegetation Index was employed to detect vegetation cover changes of the area. The study was conducted on the seven kebeles of Chewaka district and the total households of the sample kebeles are 3340. Through multistage sampling procedure a total of 384 households were selected from sample kebeles. Data were collected using questionnaires, GPS, interviews, focus group discussions and field observations. The collected data were analyzed both quantitatively and qualitatively. Results The results showed that Chewaka district has undergone substantial LULC change since population resettlement in the area. A rapid reduction of woodland (34.6%), forest (59.9%), grassland (50.5%) and bareland (46.8%) took place between 2000 and 2018, while built-up areas and cultivated lands have expanded at an average rate of 90.7 and 1515.7 ha/year respectively. The results of NDVI revealed that the extent of dense and sparse vegetation cover have decreased by 26.1% and 20.6% respectively, whereas non-vegetation cover has increased by 14,340.2 ha during the study period. It was found that rapid population growth following resettlement program, farmland and settlement expansion, deforestation, human-induced forest fire, lack of land use plan, unwise utilization and low management practices were the major factors that underpin the observed changes in the area. Conclusions Resettlement scheme has resulted in the depletion and dynamics of vegetation cover in Chewaka district. Therefore, the study suggests urgent attention on conservation of the remaining vegetation resources for sustainable utilization.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1364 ◽  
Author(s):  
Spiliotopoulos ◽  
Loukas

The objective of the current study was the investigation of specific relationships between crop coefficients and vegetation indices (VI) computed at the water-limited environment of Lake Karla Watershed, Thessaly, in central Greece. A Mapping ET (evapotranspiration) at high Resolution and with Internalized Calibration (METRIC) model was used to derive crop coefficient values during the growing season of 2012. The proposed methodology was developed using medium resolution Landsat 7 ETM+ images and meteorological data from a local weather station. Cotton, sugar beets, and corn fields were utilized. During the same period, spectral signatures were obtained for each crop using the field spectroradiometer GER1500 (Spectra Vista Corporation, NY, U.S.A.). Relative spectral responses (RSR) were used for the filtering of the specific reflectance values giving the opportunity to match the spectral measurements with Landsat ETM+ bands. Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Enhanced Vegetation Index 2 (EVI2) were then computed, and empirical relationships were derived using linear regression analysis. NDVI, SAVI, and EVI2 were tested separately for each crop. The resulting equations explained those relationships with a very high R2 value (>0.86). These relationships have been validated against independent data. Validation using a new image file after the experimental period gives promising results, since the modeled image file is similar in appearance to the initial one, especially when a crop mask is applied. The CROPWAT model supports those results when using the new crop coefficients to estimate the related crop water requirements. The main benefit of the new approach is that the derived relationships are better adjusted to the crops. The described approach is also less time-consuming because there is no need for atmospheric correction when working with ground spectral measurements.


Sign in / Sign up

Export Citation Format

Share Document