Développement hivernal de semis de Douglas

1973 ◽  
Vol 3 (2) ◽  
pp. 222-227
Author(s):  
P. Andre ◽  
J. Weerts

The authors studied the winter behavior of Douglas-fir seedlings and the influence of a complete fertilization. Under normal climatological conditions, the seedlings showed a winter development increased by the addition of fertilizers.Among the several variations of aerial and underground parts of the vegetal, the growth of the root system is very important since a lengthening of the tap root and an increase in both the number of lateral roots, and total weight were observed.

2012 ◽  
Vol 40 (2) ◽  
pp. 80 ◽  
Author(s):  
Qiang-Sheng WU ◽  
Ying-Ning ZOU ◽  
Min LIU ◽  
Kun CHENG

Putresince (Put) as one of the important polyamines (PAs) has been identified to regulate mycorrhizal development of citrus plants. The present study was to screen an efficient concentration of Put application at the range of 0.05-1 mM on the trifoliate orange (Poncirus trifoliata) seedlings colonized by Glomus mosseae, in terms of growth, root system architecture, and chlorophyll and carbohydrate contents. Compared to the non-Put treatment, all the Put treatments, especially 0.05 mM Put, significantly increased mycorrhizal colonization of tap root in addition to first, second, and third order lateral roots. The mycorrhizal seedlings treated by 0.05, 0.1, and 1 mM Put showed greater growth (stem diameter, height, leaf number, and fresh mass) and root morphological properties ( tap root length, projected and surface areas, and volume) and higher numbers of first, second, and third order lateral roots. Bio-molecules like chlorophyll a, total chlorophyll, and carotenoid contents of the seedlings were significantly increased by the Put treatments at 0.05-1 mM. All exogenous Put application at the range of 0.05-1 mM significantly decreased sucrose contents but increased glucose contents of leaves and roots. This study suggests that exogenous Put can significantly improve growth performance and root system architecture, besides changes in physiological traits of AMF seedlings. The 0.05 mM concentration of Put showed the best effects.


1981 ◽  
Vol 11 (2) ◽  
pp. 231-243 ◽  
Author(s):  
W. C. Carlson ◽  
C. L. Preisig

Controlled-release fertilizers, applied to the root zone of 1-0 plug Douglas-fir (Pseudotsugamenziesii Mirb. Franco) seedlings at planting, stimulated shoot and root growth in the following two growing seasons. Stem unit length was increased in the first growth flush after treatment, and a higher proportion of fertilized seedlings had a second growth flush that year. Fertilizing increased the number of needle primordia formed in the overwintered bud in the late summer and fall of the 1st year after treatment and increased the number of lateral buds formed the following spring, but did not affect the length of stem units elongated in the first growth flush of the 2nd year after treatment. Shoot–root ratio was not altered abnormally by fertilizing. Fertilizing increased the number and in some cases the diameter of lateral roots in the root system. Position of fertilizer placement did not alter root system symmetry in terms of the distribution of numbers of roots over 12 root zones.


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


2014 ◽  
Vol 66 (1) ◽  
pp. 3-15
Author(s):  
Sylwia Ciaglo-Androsiuk

AbstractRelation between morphological traits of the root system and yield related traits is an important issue concerning efforts aiming at improving of ideotype of cultivated plants species, including pea. In this paper, to analyse the dependency between traits describing the root system morphology and yield potential, Person’s andSpearman's_correlations as well as canonical correlations were used.Root system was analyzed in 14 and 21 day-old seedlings growing in blotting-paper cylinders. Yield potential of pea was analysed in a field experiment. Results of Person’s and Spearman's_correlations revealed that number of lateral roots and lateral roots density were correlated witch yield related traits. Correlation between root length and shoot length was observed only for 14 day-old seedlings. The result of canonical correlations revealed that number of lateral roots and lateral roots density had the largest effect on yield related traits. This work highlights, that in order to improve the yield of pea it might become necessary to understand genetic determination of morphological traits of the root system, especially number of lateral roots.


Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


2011 ◽  
Vol 37 (5) ◽  
pp. 213-218
Author(s):  
Robert Loeb ◽  
Samuel King

Trees and saplings were felled and killed by rockslides and soil slides formed during the record breaking rains of May 1–2, 2010, in Radnor Lake State Natural Area, Nashville, Tennessee, U.S. The losses were analyzed by species; stem basal area; root plate diameter and depth; percent slope; occurrence in a rockslide or soil slide as well as species classification as a lateral root system species versus tap or heart root system species. The number of stems lost for each species had a distribution similar to the results of the 2009 Natural Area survey but the number of saplings was significantly underrepresented at the landslide sites. Tree deaths were nearly five times greater than saplings lost. Although there were nearly equal numbers of tree and sapling stems classified as possessing a lateral root system versus tap or heart root system, 74% of the sapling losses were from surface root system species. The means for root plate diameter and depth were significantly larger in rockslides than soil slides even though the mean stem basal area did not differ significantly. For both slide types, slope steepness was not correlated with root plate depth, root plate diameter, or stem basal area. Similarly for both root system classi-fications, slope steepness was not significantly correlated except for surface root system trees with root plate depth. Planting tap root system trees reduces the risk of landslide, but advances in the cultivation of taxa, such as hickory (Carya spp.), are needed to assure tap root preservation during transplantation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
ZiFan Sui ◽  
Weijia Yuan ◽  
Wen Yi ◽  
Weihuan Yang

To explore the effect of grass and shrub plant roots on the stability of soil slopes in rainy areas in the south, this article relies on the Longlang Expressway construction project. Cynodon dactylon and Magnolia multiflora were selected as research subjects. The plant distribution characteristics and mechanical properties are analyzed. This paper uses ABAQUS finite element software to construct a 3D model of the planted slope in the test section. The stress and strain on the root system and the soil were observed, and the variation law of slope stability before and after plant protection under different rainfall events was compared and analyzed. The test and simulation results show that the root content of Cynodon dactylon gradually decreases with increasing depth. Cynodon dactylon was mainly distributed in the 0–30 cm soil body, and its effect on improving the cohesion of the soil body reached 75%. Magnolia multiflora belongs to vertical roots and has a strong and longer main root with relatively developed lateral roots. Its root system passes through the sliding surface of the slope bottom, which reduces the maximum equivalent plastic stress generated inside the slope by 61%. When the total rainfall duration is unchanged, under the three rainfall intensities of small, medium, and large, herbaceous plants increase the safety factor of the soil by 1.33%, 2.08%, and 6.1%, respectively, and the roots of shrubs increase the safety factor of the soil by 3.29%, 4.08%, and 4.32%, respectively. When the rainfall intensity does not change, as the rainfall time increases, the effect of plants on the slope safety factor first gradually increases and eventually stabilizes. The research results provide a reliable theoretical basis for analyzing the effect of plant roots on soil consolidation and slope protection, and they also lay a technical foundation for the promotion and application of ecological slope protection technology.


Sign in / Sign up

Export Citation Format

Share Document