Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors

1988 ◽  
Vol 18 (7) ◽  
pp. 851-858 ◽  
Author(s):  
B. M. Cregg ◽  
P. M. Dougherty ◽  
T. C. Hennessey

A 10-year-old stand of loblolly pine (Pinustaeda L.) in southeastern Oklahoma was thinned to three target basal-area levels: 5.8, 11.5, and 23 m2•ha−1 (control). Specific gravity, latewood percentage, date of transition from earlywood to latewood, growth, and climate variables were measured for 2 years after thinning. Variation in the measured wood properties was more influenced by climatic variation than by the thinning treatments. Diameter growth and per-tree basal-area growth were significantly greater on the thinned treatments both years after thinning. However, stand basal-area growth was greatest on the unthinned treatment. Basal-area growth rates were significantly related to stand basal area, tree size, soil water potential, and air temperature. Early in the summer, growth was positively related to mean daily temperature, while later in the summer, growth was negatively related to mean daily temperature, reflecting the influence of high-temperature stress on growth. A year with high summer rainfall (1984) resulted in wood with a higher percentage of latewood and higher specific gravity than wood produced in a year with low summer rainfall (1985). The date of latewood initiation was significantly related to tree size, soil moisture, and evaporative demand. The date of transition from earlywood to latewood occurred 10–14 days sooner on the unthinned plots in both years. However, annual ring latewood percentage and specific gravity were not significantly affected by thinning. Increased late-season growth rates compensated for the later transition date on the thinned treatments, resulting in no net change in ring latewood percentage due to thinning. The results indicate that individual tree basal-area growth can be increased by thinning without reducing wood density.

1973 ◽  
Vol 3 (4) ◽  
pp. 495-500 ◽  
Author(s):  
James A. Moore ◽  
Carl A. Budelsky ◽  
Richard C. Schlesinger

A new competition index, modified Area Potentially Available (APA), was tested in a complex unevenaged stand composed of 19 different hardwood species. APA considers tree size, spatial distribution, and distance relationships in quantifying intertree competition and exhibits a strong correlation with individual tree basal area growth. The most important characteristic of APA is its potential for evaluating silvicultural practices.


1983 ◽  
Vol 13 (4) ◽  
pp. 563-571 ◽  
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

A measure of kind and level of thinning is developed and its relationship to other stand attributes such as number of trees, basal area, and volume removed in thinning is quantified. This measure or thinning index is based on the ratio of the quadratic mean diameter of thinned trees to the quadratic mean diameter of all trees before thinning. The thinning index is then logically incorporated into a thinning multiplier from which is derived a compatible basal-area growth projection model to generalize the previous concepts for thinning effects in systems for predicting growth and yield. Empirical tests with data from thinned and unthinned natural stands of loblolly pine, from thinned and unthinned slash pine plantations, and from thinned western larch stands show the model to provide estimates with improved properties. Hence, the thinning index and the thinning multiplier are also proposed for other situations involving effects of thinning.


1987 ◽  
Vol 17 (6) ◽  
pp. 534-538 ◽  
Author(s):  
Peter T. Sprinz ◽  
Harold E. Burkhart

Empirical and theoretical relationships between tree crown, stem, and stand characteristics for unthinned stands of planted loblolly pine (Pinustaeda L.) were investigated. Readily measured crown variables representing the amount of photosynthetic area or distance of the translocation process were identified. Various functions of these variables were defined and evaluated with regard to efficacy in predicting stem and stand attributes. Linear models were used to evaluate the contribution of the crown variables in predicting stem and stand characteristics. The stem attributes modeled included basal area, basal area growth, diameter at breast height, and diameter growth, while the stand attributes modeled were basal area, basal area growth, arithmetic mean diameter, and mean diameter growth. Crown diameter and crown projection area were particularly important in contributing to model fit and prediction of individual stem characteristics, while sum of crown projection areas was found especially important in stand level equations. As these crown measures developed over time so did corresponding stem and stand attributes.


1985 ◽  
Vol 15 (3) ◽  
pp. 577-585 ◽  
Author(s):  
Ariel E. Lugo ◽  
Julio Figueroa

The growth of kadam (Anthocephaluschinensis (Lam.) A. Rich. ex Walp.), a fast-growing Asiatic species, was studied under different soil and climatic conditions in Puerto Rico. Plantings included a 10-year-old line planting, a 12.5-year-old plantation, 12 localities with 20-year-old single tree plots, and 1 locality with four 52-year-old trees. Over 600 trees were measured in all. Growth rates were comparable to those of fast-growing species elsewhere in the tropics; e.g., the 12.5-year-old plantation had a volume growth of 27.8 m3•ha−1•year−1 (77% was merchantable wood), a basal area growth of 1.82 m2•ha−1•year−1, and a total aboveground biomass production of 11.5 t•ha−1•year−1. Trees grew well both in plantations and in lines under natural forest. The 20-year-old single tree plots averaged up to 1 m•year−1 in height growth and 53 cm2•year−1 in basal area growth. Highest rates were observed in localities with high annual rainfall (>2500 mm) and with phosphorus- and silt-rich soils of high bulk density and low pH. After 10 years, basal area growth of trees was fastest in volcanic deep clay locations, followed, in order, by trees on volcanic shallow loams, calcareous soils, and plutonic sandy loams. However, basal area growth during the first 5 years was fastest in the plutonic sandy loams and slowest in the calcareous soils. After 20 years, volcanic deep clay soils still supported the fastest basal area growth rate (about 100 cm2•year−1), while the other locations converged at about 30 cm2•year−1. Trees reached maximum height after 20 years (average, 19 m; maximum, 26.5 m). Kadam growth was limited by close spacings (below 2.5 × 2.5 m). Trees exhibited excellent form (ratio of diameter at 1.3 m to diameter at 4.9 m > 0.8). We found no evidence of pest or disease attacks on trees, but noted severe tapering and stem twist in localities having poor growth rates. Results underline the need for caution when making species adaptability assessments in the tropics with short-term (<10 years) data.


1996 ◽  
Vol 26 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Paul A. Murphy ◽  
Michael G. Shelton

Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a modifier component. The growth component can be any function that approximates tree growth patterns, and the logistic function is chosen as the modifier component. This approach can be adapted to a variety of stand conditions, and its application is demonstrated using data from an uneven-aged loblolly pine (Pinustaeda L.) study located in Arkansas and Louisiana.


2007 ◽  
Vol 9 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Hong-gang Sun ◽  
Jian-guo Zhang ◽  
Ai-guo Duan ◽  
Cai-yun He

1992 ◽  
Vol 22 (3) ◽  
pp. 341-347 ◽  
Author(s):  
W.R. Smith ◽  
R.M. Farrar Jr. ◽  
P.A. Murphy ◽  
J.L. Yeiser ◽  
R.S. Meldahl ◽  
...  

Data were collected on open-grown loblolly pine (Pinustaeda L.), longleaf pine (Pinuspalustris Mill.), and shortleaf pine (Pinusechinata Mill.) and analyzed to provide predictive equations of crown width and maximum potential basal area growth for crown competition and growth and yield models. The measurements were taken on 115 open-grown loblolly pine trees and 76 shortleaf pines in southeastern Arkansas. The longleaf pine data consisted of 81 open-grown trees from southern Alabama, Georgia, and Florida. A circle and an ellipse were tested as geometric models of the vertically projected crown. No significant differences between the tree shapes were found based on analyses of length and azimuth of the largest crown diameter, and the circle was chosen as an appropriate model. This indicated that only the distance between trees, not their orientation to one another, need be included in models of crown competition based on crown contact. Predictive equations of mean crown width based on diameter at breast height were fitted for each species for use in models of crown competition. A Chapman–Richards growth rate function with an intercept term was fit to periodic annual inside-bark basal area growth based on initial inside-bark basal area to provide empirical estimates of maximum basal area growth rates for growth and yield modeling of the given species. Additionally, equations to predict double bark thickness as a function of diameter at breast height were fit for each species to facilitate the use of the equations with outside-bark measurements of diameter.


1982 ◽  
Vol 12 (2) ◽  
pp. 319-325 ◽  
Author(s):  
L. R. Auchmoody

Twenty fertilizer treatments of different rates and combinations of N, P, and K were established in young black cherry (Prunusserotina Ehrh.) stands that originated after clear-cutting in northwestern Pennsylvania, U.S.A. Height, diameter, and basal area growth rates and foliar nutrient composition were evaluated annually for 5 years thereafter. Nitrogen alone and P in combination with N produced large increases in height, diameter, and basal area growth. The addition of K to N + P treatments produced no additional response. Growth responses were largest during the first 2 years after fertilization, with increases in height and diameter lasting for 4 to 5 years. In year 1, maximum growth rates were reached with 112 kg N/ha and 49 kg P/ha, but 224 kg N/ha and 49 kg P/ha were necessary to sustain responses in following years. Both seedling and sapling stands responded to fertilization with similar absolute annual increases in height and diameter, though absolute basal area response of saplings exceeded that of seedlings owing to large differences in pretreatment diameters. Nitrogen fertilization increased average foliar N from 2.51 to 3.94% in year 1, but this concentration declined sharply thereafter and was at the control level by year 4. Phosphorus fertilization increased average foliar P from 0.12 to 0.21% in year 1, with further increases through year 5. Potassium fertilization increased average foliar K from 1.01 to 1.21% over the 5-year period, though there was considerable year-to-year variation.


Sign in / Sign up

Export Citation Format

Share Document