Factors related to seedling growth in a boreal Scots pine stand: a spatial analysis of a vegetation–soil system

1993 ◽  
Vol 23 (10) ◽  
pp. 2101-2109 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Timo J. Hokkanen ◽  
Erkki Järvinen ◽  
Timo Pukkala

The spatial structure of vegetation and soil properties of a patchy Scots pine (Pinussylvestris L.) forest of 1 ha was described and examined in relation to the height growth of pine seedlings in the understory. Measured ecosystem properties included the distribution and sizes of canopy trees, within-stand radiation regime, composition of understory vegetation, and topsoil and mineral soil properties. The joint distance dependent effects of large trees were described as the influence potential, derived from the ecological field theory approach. The variation in understory vegetation and soil characteristics was described as score values, derived from multivariate analyses, summarizing the variation of multiple measured variables; factor analysis was used for topsoil and mineral soil properties and canonical correspondence analysis was used for understory species composition. The spatial variation of variables was examined and mapped using geostatistical techniques. The influence potential of canopy trees, as determined by their size and spatial distribution, correlated most strongly with seedling growth, so that the height growth of seedlings was retarded in the vicinity of trees. Correlations suggest that canopy trees also affected seedlings indirectly through their dominating effect on the properties of understory vegetation and humus layer. The mineral soil nutrient content showed a weak positive correlation with seedling height growth. All the factors related to seedling growth showed substantial small-scale variation across the 1-ha study site. The analysis suggests that the variation in seedling height growth in the understory of the studied Scots pine stand is largely caused by the spatial heterogeneity of both above- and below-ground factors and by the joint effect of their complex interaction.

2010 ◽  
Vol 90 (4) ◽  
pp. 559-566 ◽  
Author(s):  
M. Häkkinen ◽  
J. Heikkinen ◽  
R. Mäkipää

Observed small-scale spatial variation of forest soil is suggested to be produced by tree influence. We examined spatial variation of the tree influences by modelling tree influence potential that accounts for location and size of trees. Thereafter, we tested significance of the correlations between the tree influence potential and soil properties (carbon stock and C:N ratio of the organic layer) with Monte Carlo permutation tests. The methods were applied to five Scots pine stands located in the boreal vegetation zone in Finland. We found statistically significant tree influence on soil C:N ratio in all studied stands, but the tree influence on soil carbon stock was significant only in three of five stands. This indicates that location of trees has a relatively steady and remarkable influence on spatial variation of a soil parameter that reflects soil fertility and nutrient balance, but variation of soil carbon stock is not that clearly affected by current tree stand. The correlations between C:N ratios and tree influences were positive in four of the five stands, indicating that soil was less fertile near the trees. The methods described here produce statistically reliable information pertaining to the influence of trees on soil properties.


Silva Fennica ◽  
2018 ◽  
Vol 52 (5) ◽  
Author(s):  
Jaakko Repola ◽  
Hannu Hökkä ◽  
Hannu Salminen

The aim of this study was to develop individual-tree diameter and height growth models for Scots pine, Norway spruce, and pubescent birch growing in drained peatlands in Finland. Trees growing in peatland sites have growth patterns that deviate from that of trees growing in mineral soil sites. Five-year growth was explained by tree diameter, different tree and stand level competition measures, management operations and site characteristics. The drainage status of the site was influencing growth directly or in interaction with other variables. Site quality had a direct impact but was also commonly related to current site drainage status (need for ditch maintenance). Recent thinning increased growth of all species and former PK fertilization increased growth of pine and birch. Temperature sum was a significant predictor in all models and altitude for spruce and birch. The data were a subsample of the 7th National Forest Inventory (NFI) sample plots representing northern and southern Finland and followed by repeated measurements for 15–20 yrs. Growth levels predicted by the models were calibrated using NFI11 data to remove bias originating from the sample of the modelling data. The mixed linear models technique was used in model estimation. The models will be incorporated into the MOTTI stand simulator to replace the current peatlands growth models.


1980 ◽  
Author(s):  
John J. Rawinski ◽  
James A. Bowles ◽  
Nonan V. Noste

1990 ◽  
Vol 5 (2) ◽  
pp. 49-51 ◽  
Author(s):  
Don Minore ◽  
Howard G. Weatherly

Abstract The effects of five yarding-slash treatment combinations on Douglas-fir (Pseudotsuga menziesii) growth and survival were compared by obtaining seedling heights, potential seedling heights, survival percentages, soil-penetration resistances, and the occurrence of visible soil-humus for 149 progeny-test plantations in western Oregon. Survival was not improved by mechanical site preparation, and seedlings grown on the compacted, low-humus soils associated with piling slash off site did not grow as tall during their first 5 years as seedlings growing on similar sites where slash had been broadcast-burned. Tilling (disking or ripping) did not benefit seedling height growth. West. J. Appl. For. 5(2):49-51, April 1990.


2021 ◽  
Vol 490 ◽  
pp. 119102
Author(s):  
Jarosław Socha ◽  
Svein Solberg ◽  
Luiza Tymińska-Czabańska ◽  
Piotr Tompalski ◽  
Patrick Vallet

2008 ◽  
Vol 310 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Zhiyong Zhou ◽  
Osbert Jianxin Sun ◽  
Zhongkui Luo ◽  
Hongmei Jin ◽  
Quansheng Chen ◽  
...  

2021 ◽  
Author(s):  
yuanyuan Tao ◽  
Tian-cui Sang ◽  
Jun-jie Yan ◽  
Yun-xia Hu ◽  
Yu Zhao ◽  
...  

Abstract different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds had significant effects at different sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased, and the emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1–3 cm, and high burial depth (5–9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


Sign in / Sign up

Export Citation Format

Share Document