Soil compaction and topsoil removal effects on soil properties and seedling growth in Amazonian Ecuador

1996 ◽  
Vol 82 (1-3) ◽  
pp. 197-209 ◽  
Author(s):  
C.L. Woodward
Author(s):  
Claudia Borgmann ◽  
Deonir Secco ◽  
Araceli Ciotti de Marins ◽  
Luiz Antônio Zanão Junior ◽  
Doglas Bassegio ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Meghdad Jourgholami ◽  
Azadeh Khoramizadeh ◽  
Angela Lo Monaco ◽  
Rachele Venanzi ◽  
Francesco Latterini ◽  
...  

Engineering applications can be used to mitigate the adverse effects of soil compaction and amend compacted soils. Previous literature has highlighted the beneficial effects of interventions such as litter mulching and incorporation on skid trails. However, little is known about the effectiveness of these alternatives in restoring forest soil quality after forest logging. The objective of this study was to properly elucidate the effects of the above mentioned soil protection methods, litter incorporation before skidding (LI) and litter mulching after skidding (LM), on the recovery of compacted soil’s physico-chemical and biological properties on skid trails over a 2-year period in the Hyrcanian forests of Iran to identify the best option for restoration intervention. The litter used in both methods consisted of dried leaves of the hornbeam and maple tree in three intensities of 3, 6, and 9 Mg ha−1. The results showed that the application of both methods (LI and LM) significantly improved the soil properties when compared to the untreated skid trail. Results showed that the recovery values of soil properties in the LI treatments were significantly higher than those of the LM. The recovery values of soil properties by 6 and 9 Mg ha−1 were significantly higher than those of 3 Mg ha−1, while the differences were not significant between 6 and 9 Mg ha−1. Our findings showed that soil properties were partially recovered (70–80%) over a 2-year period from treatment, compared to untreated, but the full recovery of soil properties required more time to return to the pre-harvest value. Overall, the results of this study demonstrated that the application of soil protection methods accelerates the process of recovering soil properties much faster than natural soil recovery, which can take more than 20 years in these forests.


1993 ◽  
Vol 23 (10) ◽  
pp. 2101-2109 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Timo J. Hokkanen ◽  
Erkki Järvinen ◽  
Timo Pukkala

The spatial structure of vegetation and soil properties of a patchy Scots pine (Pinussylvestris L.) forest of 1 ha was described and examined in relation to the height growth of pine seedlings in the understory. Measured ecosystem properties included the distribution and sizes of canopy trees, within-stand radiation regime, composition of understory vegetation, and topsoil and mineral soil properties. The joint distance dependent effects of large trees were described as the influence potential, derived from the ecological field theory approach. The variation in understory vegetation and soil characteristics was described as score values, derived from multivariate analyses, summarizing the variation of multiple measured variables; factor analysis was used for topsoil and mineral soil properties and canonical correspondence analysis was used for understory species composition. The spatial variation of variables was examined and mapped using geostatistical techniques. The influence potential of canopy trees, as determined by their size and spatial distribution, correlated most strongly with seedling growth, so that the height growth of seedlings was retarded in the vicinity of trees. Correlations suggest that canopy trees also affected seedlings indirectly through their dominating effect on the properties of understory vegetation and humus layer. The mineral soil nutrient content showed a weak positive correlation with seedling height growth. All the factors related to seedling growth showed substantial small-scale variation across the 1-ha study site. The analysis suggests that the variation in seedling height growth in the understory of the studied Scots pine stand is largely caused by the spatial heterogeneity of both above- and below-ground factors and by the joint effect of their complex interaction.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


2005 ◽  
Vol 2005 (1) ◽  
pp. 1029-1041
Author(s):  
J. M. Showalter ◽  
◽  
J. A. Burger ◽  
C. E. Zipper ◽  
J. M. Galbraith

1998 ◽  
Vol 78 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Douglas M. Stone ◽  
John D. Elioff

Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic matter removal on soil properties and growth of aspen suckers, associated woody species, herbaceous vegetation, and on stand development. Four treatments: (1) total tree harvest (TTH); (2) TTH plus soil compaction (CPT); (3) TTH plus forest floor removal (FFR); and (4) TTH plus CPT + FFR were applied after winter-harvest of a 70-yr-old aspen stand growing on a loamy sand with a site index(age50) of 20.7 m. The CPT treatment significantly increased bulk density and soil strength of the surface 30 cm of soil and neither have recovered during the 5 yr since treatment. The CPT plots had 19.6 thousand (k) suckers ha−1, less than half that of the TTH and FFR treatments; mean diameter (19.4 mm) and height (271 cm) were greatest on the TTH plots. The disturbance treatments (CPT, FFR, and CPT + FFR) each reduced biomass of foliage, stems, and total suckers compared with the TTH treatment. Total aboveground biomass (herbs + shrubs + suckers) was less than half that of TTH plots. There were 5.0 k saplings (suckers >2.5 cm DBH) ha−1 on the TTH plots, but fewer than 1.0 k ha−1 in the other treatments. The disturbance treatments decreased 5-yr growth of potential crop trees, delayed early stand development, and temporarily reduced stockability and site productivity of an aspen ecosystem. Key words: Soil compaction, organic matter removal, site productivity, stand development


2021 ◽  
Author(s):  
Songül Gürsoy

In modern agriculture, most of the field operations from sowing to harvesting are done mechanically by using heavy agriculture machines. However, the loads from these heavy machines may induce stresses exceeding soil strength causing soil compaction. Nowadays, soil compaction is considered as a serious form of soil degradation, which may have serious economics and environmental consequences in world agriculture because of its effects on soil structure, plant growth and environmental events. Vehicle load, inflation pressure, number of passes, stress on the soil, and soil properties (e.g. soil water content, soil texture, soil strength, soil bulk density) play an important role on soil compaction. This chapter reviews the works related to soil compaction in agricultural areas. Also, it discusses the nature and causes of soil compaction, the effects of the compaction on soil properties, environment and plant growth, and the possible solutions suggested in the literature.


Author(s):  
V. A. Basarab

The article is devoted to determine the technological parameters of soil compaction by rollers according to soil properties in construction. The compaction of the soil occurs due to certain force loads on the soil. Nowadays, there are enough methods to determine the technological parameters of soil compaction process, however, there are few research methods that consider the system of soil-machine-technological parameters. The urgency of the soil compaction process, which ultimately determines the quality of construction products, was emphasized. The basic physical and mechanical properties of soil and technological parameters of the compaction process were given. Analysis of discrete mathematical model of interaction between roller and soil was carried out in order to determine the technological parameters of soil compaction process in the field of construction technologies. A rheological model to describe the soil properties was used. The differential equations of the interaction between roller and soil have been made. A numerical calculation method to solve the differential equations has been proposed. The basic technological parameters of soil compaction process by rollers have been determined - the thickness of soil layer to be compacted, the number of the roller passes, and the speed of the roller movement. The methodology of theoretical and experimental researches of interaction between roller and soil has been proposed in order to clarify the mathematical model and to find the technological parameters of the compaction process. Experimental research methods are based on the determination of the stress-strain state of soil and on the Fourier analysis of the experimental data. Fourier analysis of the experimental data makes it possible to analyze the qualitative energy spectrum of the interaction between roller and soil to determine the rational amplitude-frequency characteristics of the compaction process. Experimental studies allow obtaining such rheological properties of soil as elasticity, viscosity, coefficient of elastic resistance, etc. The main recommendations for the choice of compaction method depending on the type of soil have been proposed.


Sign in / Sign up

Export Citation Format

Share Document