Effects of regeneration methods on drought damage to newly planted Norway spruce seedlings

1995 ◽  
Vol 25 (5) ◽  
pp. 790-802 ◽  
Author(s):  
Urban Nilsson ◽  
Göran Örlander

A field experiment was established between 1989 and 1993 to study the effects of (i) the age of clearcuts on damage by pine weevils (Hylobiusabietis L.) and (11) competing vegetation on the survival and growth of planted Norway spruce (Piceaabies (L.) Karst.). On each of four sites Norway spruce seedlings were planted on 0 to 4-year-old clearcuts. Effects of mounding, herbicide and mowing, removal of slash, and seedling stock type were also investigated. As many seedlings suffered severely from a drought that affected southern Sweden in 1992, this study reports a separate analysis of mortality due to drough. From the middle of May until the beginning of July 1992, only negligible precipitation was recorded on all four sites. The biomass of ground vegetation was correlated with the age of the clearcut. On fresh and 1-year-old clearcuts, only negligible amounts of vegetation were found, whereas about 2 Mg•ha−1 of ground vegetation were found on 2- and 3-year-old clearcuts. Low soil water potentials were recorded on 2- and 3-year-old clearcuts but not on fresh clearcuts. There was no effect of the slash removal treatment on soil water potential, but there was a significant effect of the soil and vegetation treatments. Mounding and herbicide treatments increased the soil water potentials compared with untreated controls and mowed plots. Mortality by drought was higher for seedlings planted on old clearcuts than for seedlings planted on fresh ones. Mortality was reduced by mounding, but late planting increased the number of dead seedlings significantly. The mortality of containerized seedlings was considerably less than that of bare-root seedlings. On old clearcuts growth of seedlings planted on plots with no vegetation control (untreated control and mown plots) was less than that of seedlings planted on plots where transpiration by ground vegetation was reduced (herbicide and mounding).

1999 ◽  
Vol 29 (7) ◽  
pp. 1015-1026 ◽  
Author(s):  
Urban Nilsson ◽  
Göran Örlander

A field experiment was established between 1989 and 1993 to study the effects of competing vegetation on growth of planted Norway spruce (Picea abies (L.) Karst.) seedlings. Effects of clearcut age, scarification (mounding), herbicide treatment, and seedling stock type were investigated 5 years after planting. On fresh clearcuts, amounts of vegetation were negligible, whereas 2.1-3.7 Mg·ha-1 was found on 4-year-old and older clearcuts. Soil temperatures were about 10% higher in mounds than in undisturbed ground, while herbicide and clearcut age only marginally affected soil temperatures. Seedlings planted on old clearcuts showed significant reductions in growth due to interference from vegetation. Five years after planting, the reduction in growth corresponded to about 1 year's growth. Most of the interaction between seedlings and vegetation occurred during the first 2 years after planting. Thus, scarification was just as effective as repeated herbicide treatments in reducing competition from vegetation. Differences in periods of drought between years could largely explain variation in leading shoot length. However, leading shoot length was affected in the same way irrespective of vegetation control treatments. Five years after planting, the relative differences in diameter between bare-root and containerized seedlings were the same as at the time of planting.


1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


2006 ◽  
Vol 36 (10) ◽  
pp. 2377-2385 ◽  
Author(s):  
Karin Johansson ◽  
Göran Örlander ◽  
Urban Nilsson

Establishment of Norway spruce (Picea abies (L.) Karst.) seedlings is often restricted by competition from vegetation, drought, and damage by pine weevils. In this study, effects of mulching on these factors were investigated. Norway spruce seedlings were planted on fresh and 1-year-old clearcuts treated with mulch on three sites in southern Sweden. Mulch was made of slash from the old stand and applied on whole blocks at three different depths: 0, 10, and 20 cm. Both insecticide-treated and untreated seedlings were planted. By reducing the competing vegetation and improving soil moisture and mineralization, mulching created a favorable growth environment. Mulching significantly improved growth in terms of height, diameter, and volume of the seedlings. Growth continued to increase over time in mulched treatments, probably as an effect of increased nutrient availability. The 20 cm mulch layer generated the greatest increase in growth throughout the 10-year experimental period. Soil moisture was preserved under the isolating mulch layer and during periods of drought soil water potential was significantly higher in mulched treatments. After 2 years, percent cover of competing vegetation was 50%–60% without mulch and 10%–20% with a mulch depth of 20 cm. Insecticide-treated seedlings achieved a survival rate close to 100% in all mulching treatments, whereas survival among untreated seedlings was only 40% on some clearcuts. Mulching alone did not affect survival or abundance of pine weevils.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 531e-531
Author(s):  
Erik B. G. Feibert ◽  
Clint C. Shock ◽  
Monty Saunders

Onions were grown with different soil water potentials as irrigation criteria to determine the soil water potential at which optimum onion yield and quality occurs. Furrow irrigation treatments in 1992 and 1993 consisted of six soil water potential thresholds (-12.5 to -100 kPa). Soil water potential in the first foot of soil was measured by granular matrix sensors (Watermark Model 200SS, Irrometer Co., Riverside, CA) that had been previously calibrated to tensiometers on the same silt loam series. Both years, yield and market grade based on bulb size (more jumbo and colossal onions) increased with wetter treatments. In 1993, a relatively cool year, onion grade peaked at -37.5 kPa due to a significant increase in rot during storage following the wetter treatments. These results suggest the importance of using moisture criteria to schedule irrigations for onions.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 795-798 ◽  
Author(s):  
Dana L. Baumann ◽  
Beth Ann Workmaster ◽  
Kevin R. Kosola

Wisconsin cranberry growers report that fruit production by the cranberry cultivar `Ben Lear' (Vaccinium macrocarpon Ait.) is low in beds with poor drainage, while the cultivar `Stevens' is less sensitive to these conditions. We hypothesized that `Ben Lear' and `Stevens' would differ in their root growth and mortality response to variation in soil water potential. Rooted cuttings of each cultivar were grown in a green-house in sand-filled pots with three different soil water potentials which were regulated by a hanging water column below a fritted ceramic plate. A minirhizotron camera was used to record root growth and mortality weekly for five weeks. Root mortality was negligible (2% to 6%). Whole plant relative growth rates were greatest for both cultivars under the wettest conditions. Rooting depth was shallowest under the wettest conditions. Whole-plant relative growth rates of `Ben Lear' were higher than `Stevens' at all soil water potentials. `Stevens' plants had significantly higher root to shoot ratios and lower leaf area ratios than `Ben Lear' plants, and produced more total root length than `Ben Lear' at all soil water potentials. Shallow rooting, high leaf area ratio, and low allocation to root production by `Ben Lear' plants may lead to greater susceptibility to drought stress than `Stevens' plants in poorly drained cranberry beds.


1979 ◽  
Vol 59 (3) ◽  
pp. 259-264 ◽  
Author(s):  
R. DE JONG ◽  
K. F. BEST

Daily emergence counts were made on Canthatch wheat (Triticum aestivum L.) grown in five soil types, at four soil temperatures and three water potentials and planted at five different depths. Regardless of soil type, soil water potential or depth of planting, 50% emergence generally occurred within a week at 19.4 and 26.7 °C, and within 2 wk at 12.2 °C, but it took up to 6 wk at 5 °C. The heat sum required to attain 50% seedling emergence did not increase significantly with decreasing soil water potentials, but the minimum temperature for emergence dropped from 1.3 to 0.2 °C as the water potential decreased from −⅓ to −10 bar. It was suggested that the seedlings compensated for the increased water stress by lowering their minimum temperature requirements. Increasing the planting depth not only increased the heat requirement for emergence, but it also increased the variability of emergence, especially at low temperatures. Practical aspects concerning planting dates and depths were considered.


1994 ◽  
Vol 24 (5) ◽  
pp. 869-877 ◽  
Author(s):  
W.H. Fogal ◽  
S.J. Coleman ◽  
M.S. Wolynetz ◽  
H.O. Schooley ◽  
S.M. Lopushanski ◽  
...  

The numbers of seed strobili and pollen strobilus clusters and the extent of branch terminal growth were determined on 6-year-old containerized jack pine (Pinusbanksiana Lamb.) trees following modification of the soil nitrogen (N) supply (NH4NO3 at 3, 100, or 300 mg N/L; NO3− at 100 mg N/L; or NH4+ at 100 mg N/L in a nutrient solution), soil water supply (soil water potentials above −20 kPa compared with potentials near −70 kPa), and tree crown size (intact trees outside polythene shelters and lightly versus severely topped trees under polythene shelters). These factors were tested with or without biweekly foliar applications of spray solutions containing 400 mg/L of GA4/7. Intact trees outside polythene shelters did not display sexual or growth responses to N or GA4/7 treatments. Seed strobilus production on topped trees under shelters was not influenced by the level of topping or N supply, but it was depressed by low soil moisture potentials and stimulated by GA4/7 with high or low soil water potentials. Pollen strobilus production was depressed by severe topping and by low soil water potential; it was stimulated by GA4/7 on lightly topped trees but not on severely topped trees and by a low (3 mg N/L) N supply. In the year after treatment, terminal growth of a branch from the 2-year-old nodal whorl was not influenced by nitrogen supply or by light topping but it was increased by severe topping; it was increased by GA4/7 treatment if soil water potential was high but not with low water potential; it was depressed by low soil water potential.


2019 ◽  
Vol 65 (No. 2) ◽  
pp. 51-60 ◽  
Author(s):  
Vít Šrámek ◽  
Kateřina Neudertová Hellebrandová ◽  
Věra Fadrhonsová

Interception, soil moisture and soil water potential were observed in four Norway spruce stands of different age in two subsequent vegetation seasons 2017 and 2018. Vegetation season 2018 can be characterized as being abnormally hot and dry with only 66% of precipitation in comparison with normal conditions. The interception of spruce increased with the stand age and its dimensions, ranging between 16 and 48% in 2017 and in the majority of stands even increasing in 2018. The soil moisture significantly decreased during the vegetation season 2018, with soil water potential close to the permanent wilting point (–1.5 MPa) for a substantial part of the monitored period. Differences between individual stands were observed in terms of the soil water potential (SWP) development which does not follow the interception patterns suggesting that the stand transpiration is a driving factor responsible for the soil water budget. In all stands, with the exception of the oldest one, the SWP of the upper soil horizon was less than 1.5 MPa for more than 80 days. In such extreme conditions the drought would negatively influence any Norway spruce stand regardless of its age or structure.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 51 ◽  
Author(s):  
RP Samui ◽  
S Kar

The phasic and diurnal leaf water potential (�L) and transpirational responses to soil water potential by groundnut (Arachis hypogea L.) were investigated under controlled soil water conditions in a glasshouse. Three different soil water potentials (�s) in the tensiometric ranges were maintained in a lateritic sandy loam soil (Oxisol) during the seedling (S1), branching (S2) and peg formation (S3) stages of groundnut. Measured values of �s, �L rooting density, soil capillary conductivity and transpiration rate were used to calculate the soil and plant resistances to water uptake by the plant. The soil and plant resistances to water uptake by the groundnut plant increased appreciably as the soil water potential decreased from -0.11 to -0.70 bar. Plant resistance (Rp) was two to three orders of magnitude higher than soil resistance (Rs). Rs decreased with growth of the plant, whereas Rp increased, especially at -0.7 bar �s, Decreases in transpiration at �s lower than -0.33 bar were closely associated with the increases in the plant and soil resistances, and with lower leaf water potentials.


1979 ◽  
Vol 92 (1) ◽  
pp. 175-183 ◽  
Author(s):  
J. D. H. Keatinge ◽  
R. H. Stewart ◽  
M. K. Garrett

SummaryThe rate of leaf extension in swards of the perennial ryegrass cv. Perma was monitored continuously from March 1976 to September 1977 in Northern Ireland. In this period air temperature and soil water potential were shown to be closely correlated with leaf extension rate. Simple linear expressions are shown to adequately describe the relationship between temperature and leaf extension rate when the year is divided into a winter phase, in which sward growth is very slow, and the remainder of the year in which temperature is high enough to allow significant sward production. Leaf extension growth occurred at all temperatures above freezing point. Soil water potentials of 0·15 MPa are shown to be capable of significantly reducing leaf extension rate. However, the occurrence of such soil water potentials are sufficiently rare in Northern Ireland as to permit prediction of leaf extension rates in perennial ryegrass from simple daily temperature records.


Sign in / Sign up

Export Citation Format

Share Document