Bradykinin facilitates noradrenaline spillover during contraction in the canine gracilis muscle

2001 ◽  
Vol 79 (10) ◽  
pp. 831-835
Author(s):  
Julie L Lavoie ◽  
Louise Béliveau

Noradrenaline spillover from skeletal muscle vascular areas increases during exercise but the underlying mechanisms are not well understood. Muscle contraction itself causes changes in many factors that could affect noradrenaline spillover. For instance, it has been reported that bradykinin is synthesized in skeletal muscle areas during contraction. Because the B2 bradykinin receptor facilitates noradrenaline spillover, it may be involved in the increase associated with contraction. In this experiment, we studied the effect of bradykinin on noradrenaline spillover in the in situ canine gracilis muscle, using the specific B2 antagonist HOE 140. The drug did not modify noradrenaline spillover at rest, but did cause a significant decrease during muscle contraction, from 558 to 181 pg·min–1. As reported previously in the literature, fractional extraction of noradrenaline decreased during muscle contraction. This effect was independent of HOE 140 treatment. In light of our results, it seems that bradykinin formation during muscle contraction may play an important part in the observed increase in noradrenaline spillover but does not affect fractional extraction.Key words: skeletal muscle, fractional extraction, stimulation, HOE 140, B2 receptors.

2005 ◽  
Vol 289 (6) ◽  
pp. R1770-R1776 ◽  
Author(s):  
David P. Basile ◽  
Deborah L. Donohoe ◽  
Shane A. Phillips ◽  
Jefferson C. Frisbee

In addition to the long-term renal complications, previous studies suggested that after acute renal failure (ARF), rats manifest an increased pressor response to an overnight infusion of ANG II. The present study tested whether recovery from ARF results in alterations in sensitivity to the peripheral vasculature. ARF was induced in Sprague-Dawley rats by 45 min of bilateral renal ischemia and reperfusion. Animals were allowed to recover renal structure and function for 5–8 wk, after which the acute pressor responses to ANG II were evaluated either in vivo in in situ skeletal muscle arterioles or in isolated gracilis muscle arteries in vitro. Baseline arterial pressure was not different in ARF rats vs. sham-operated controls, although ARF rats exhibited an enhanced pressor response to bolus ANG II infusion compared with control rats. Steady-state plasma ANG II concentration and plasma renin activity were similar between ARF and control rats. Constrictor reactivity of in situ cremasteric arterioles from ARF rats was enhanced in response to increasing concentrations of ANG II; however, no difference was observed in arteriolar responses to elevated Po2, norepinephrine, acetylcholine, or sodium nitroprusside. Isolated gracilis muscle arteries from ARF rats also showed increased vasoconstriction in response to ANG II but not norepinephrine. In conclusion, recovery from ischemic ARF is not associated with hypertension but is associated with increased arteriolar constrictor reactivity to ANG II. Although the mechanisms of this altered responsiveness are unclear, such changes may relate, in part, to cardiovascular complications in patients with ARF and/or after renal transplant.


2016 ◽  
Vol 120 (8) ◽  
pp. 876-888 ◽  
Author(s):  
Ting Chen ◽  
Timothy M. Moore ◽  
Mark T. W. Ebbert ◽  
Natalie L. McVey ◽  
Steven R. Madsen ◽  
...  

Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.


1986 ◽  
Vol 240 (3) ◽  
pp. 747-751 ◽  
Author(s):  
A M Bassols ◽  
J Carreras ◽  
R Cussó

Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction.


1999 ◽  
Vol 78 (1) ◽  
pp. 75-80
Author(s):  
Julie L Lavoie ◽  
François Trudeau ◽  
Louise Béliveau

Many authors have reported that, during exercise, noradrenaline spillover increases and fractional extraction decreases. It has been suggested that the increase in blood flow to active muscles may contribute to these effects. Muscle contraction also causes changes in many factors that may affect noradrenaline spillover and fractional extraction. In this experiment, we studied the effect of muscle contraction and blood flow on noradrenaline and adrenaline spillover and fractional extraction in the in situ canine gracilis muscle. The low intensity stimulation protocol enabled us to have muscle contractions without any effect on the local concentration of noradrenaline, as measured by microdialysis, and noradrenaline spillover. Fractional extraction of both noradrenaline and adrenaline was unaffected by increasing blood flow three and four times its resting value. In addition, noradrenaline spillover was increased by the higher blood flow, from 188 to 452 pg·min-1 at rest and from 246 to 880 pg·min-1 during stimulation. Stimulation of muscle contraction caused a significant increase in fractional extraction of noradrenaline and a nonsignificant increase in adrenaline extraction. In addition, an adrenaline spillover was observed in certain conditions. In light of our results, it seems that blood flow may not be the main factor decreasing fractional extraction of noradrenaline during exercise. However, blood flow could contribute to the increase in noradrenaline spillover observed in the active muscles during exercise.Key words: skeletal muscle, spillover, fractional extraction, stimulation, adrenaline.


2003 ◽  
Vol 285 (5) ◽  
pp. R1124-R1134 ◽  
Author(s):  
Jefferson C. Frisbee

Skeletal muscle arterioles from obese Zucker rats (OZR) exhibit oxidant stress-based alterations in reactivity, enhanced α-adrenergic constriction, and reduced distensibility vs. microvessels of lean Zucker rats (LZR). The present study determined the impact of these alterations for perfusion and performance of in situ skeletal muscle during periods of elevated metabolic demand. During bouts of isometric tetanic contractions, fatigue of in situ gastrocnemius muscle of OZR was increased vs. LZR; this was associated with impaired active hyperemia. In OZR, vasoactive responses of skeletal muscle arterioles from the contralateral gracilis muscle were impaired, due in part to elevated oxidant tone; reactivity was improved after treatment with polyethylene glycol-superoxide dismutase (PEGSOD). Arterioles of OZR also exhibited increased α-adrenergic sensitivity, which was abolished by treatment with phentolamine (10-5 M). Intravenous infusion of phentolamine (10 mg/kg) or PEG-SOD (2,000 U/kg) in OZR altered neither fatigue rates nor active hyperemia from untreated levels; however, combined infusion improved performance and hyperemia, although not to levels in LZR. Microvessel density in the contralateral gastrocnemius muscle, determined via histological analyses, was reduced by ∼25% in OZR vs. LZR, while individual arterioles from the contralateral gracilis muscle demonstrated reduced distensibility. These data suggest that altered arteriolar reactivity contributes to reduced muscle performance and active hyperemia in OZR. Further, despite pharmacological improvements in arteriolar reactivity, reduced skeletal muscle microvessel density and arteriolar distensibility also contribute substantially to reduced active hyperemia and potentially to impaired muscle performance.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Sign in / Sign up

Export Citation Format

Share Document