scholarly journals Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle

2016 ◽  
Vol 120 (8) ◽  
pp. 876-888 ◽  
Author(s):  
Ting Chen ◽  
Timothy M. Moore ◽  
Mark T. W. Ebbert ◽  
Natalie L. McVey ◽  
Steven R. Madsen ◽  
...  

Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.

2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Hui Song ◽  
Xin Xu

Objective Purpose:Downhill running can causes muscle damage, called delayed muscle damage and induced oxidative stress and inflammatory reaction, causing abnormity of skeletal muscle morphology, changing in blood biochemical indexes, and decreasing in function of skeletal muscle systolic. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1). There were new evidences demonstrated that DDAH1 is an important regulator of cell redox state and apoptosis. In summary, the study shown that DDAH1 is an important regulator of cell redox state and apoptosis. Emerging evidences suggests that DDAH1 controls cellular oxidative stress and apoptosis via a miR-21-dependent pathway. However, the effect and mechanism of DDAH1 on damage of skeletal muscle caused by downhill running is not clear enough. Thus,the purpose of this experiment was to determine the effect and mechanism of DDAH1 in downhill running. Keys: downhill running; delayed onset muscle soreness(DOMS); eccentric exercise; skeletal muscle. Methods Method: The experimental mice were 24 female C57 mice of 10 weeks old and 24 female DDAH1 hybrid knockout mice of 10 weeks old. DDAH1 KO mice used for this study was knockout of dimethylarginine dimethylaminohydrolase 1 compared with WT mice. Animals were fed standard laboratory chow and had access to water ad libitum. C57 mice were divided into 3 groups: C57 control, C57 48H, C57 120H; DDAH1 KO mice were divided into 3 groups: DDAH1 control, DDAH1 48H, DDAH1 120H. C57 and DDAH1 KO mice used for this study completed a single bout of downhill running exercise (20°, 17 m/min, 60 min), and gastrocnemius muscle, soleus muscle and quadriceps femoris muscle were collected 48 and 120 hours (H) postexercise (PE). C57control group and DDAH1 KO control group dose not exercise. Speed on the treadmill was gradually increased from 10 to 17m/min during a 7-min warm-up period (increased of 1m/min every minute). All experiments were conducted at approximately the same time of day. Maximal grip strength was measured ifor each groups. Grip strength testing was completed to detect post-eccentric exercise injury in C57 and DDAH1 KO mice. All results were analyzed by means of methods of histological and molecular biological. Results Method: The experimental mice were 24 female C57 mice of 10 weeks old and 24 female DDAH1 hybrid knockout mice of 10 weeks old. DDAH1 KO mice used for this study was knockout of dimethylarginine dimethylaminohydrolase 1 compared with WT mice. Animals were fed standard laboratory chow and had access to water ad libitum. C57 mice were divided into 3 groups: C57 control, C57 48H, C57 120H; DDAH1 KO mice were divided into 3 groups: DDAH1 control, DDAH1 48H, DDAH1 120H. C57 and DDAH1 KO mice used for this study completed a single bout of downhill running exercise (20°, 17 m/min, 60 min), and gastrocnemius muscle, soleus muscle and quadriceps femoris muscle were collected 48 and 120 hours (H) postexercise (PE). C57control group and DDAH1 KO control group dose not exercise. Speed on the treadmill was gradually increased from 10 to 17m/min during a 7-min warm-up period (increased of 1m/min every minute). All experiments were conducted at approximately the same time of day. Maximal grip strength was measured ifor each groups. Grip strength testing was completed to detect post-eccentric exercise injury in C57 and DDAH1 KO mice. All results were analyzed by means of methods of histological and molecular biological. Conclusions Conclusion: The DDAH1 knockout has a protective effect on delayed onset muscle soreness(DOMS) caused by downhill running, and accelerate the injury recovery.     


2020 ◽  
Author(s):  
Kazuya Hasegawa ◽  
Yuya Yamaguchi ◽  
Yutthana Pengjam

ABSTRACTPyruvic acid therapy is used for various diseases, but the therapeutic effect decreases at high doses. The molecular mechanism of high-dose pyruvate is not well understood. The purpose of this study was to identify the effects of high dose pyruvate addition on skeletal muscle using C2C12. The gene expression profile for the GSE5497 dataset was taken from the Gene Expression Omnibus database. GEO2R was used to identify specifically expressed genes (DEGs). Functional analysis and pathway enrichment analysis of DEG were performed using the DAVID database. The protein-protein interaction (PPI) network was built in the STRING database and visualized using Cytoscape. GO analysis showed that up-regulated DEG was primarily involved in angiogenesis, cell adhesion, and inflammatory response. We also showed that down-regulated DEG is involved in the regulation of muscle contraction, skeletal muscle fiber development. In addition, the upregulated KEGG pathway of DEG included Rheumatoid arthritis, Chemokine signaling pathway, and Cytokine-cytokine receptor interaction. Downregulated DEG included Calcium signaling pathway, hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy, Neuroactive ligand-receptor interaction, and Cardiac muscle contraction. Further, analysis of two modules selected from the PPI network showed that high-dose pyruvate exposure to C2C12 was primarily associated with muscle contraction, muscle organ morphogenesis, leukocyte chemotaxis, and chemokine activity. In conclusion, High-dose pyruvate treatment of C2C12 was found to be associated with an increased inflammatory response and decreased skeletal muscle formation. However, further studies are still needed to verify the function of these molecules at high doses of pyruvate.


2001 ◽  
Vol 79 (10) ◽  
pp. 831-835
Author(s):  
Julie L Lavoie ◽  
Louise Béliveau

Noradrenaline spillover from skeletal muscle vascular areas increases during exercise but the underlying mechanisms are not well understood. Muscle contraction itself causes changes in many factors that could affect noradrenaline spillover. For instance, it has been reported that bradykinin is synthesized in skeletal muscle areas during contraction. Because the B2 bradykinin receptor facilitates noradrenaline spillover, it may be involved in the increase associated with contraction. In this experiment, we studied the effect of bradykinin on noradrenaline spillover in the in situ canine gracilis muscle, using the specific B2 antagonist HOE 140. The drug did not modify noradrenaline spillover at rest, but did cause a significant decrease during muscle contraction, from 558 to 181 pg·min–1. As reported previously in the literature, fractional extraction of noradrenaline decreased during muscle contraction. This effect was independent of HOE 140 treatment. In light of our results, it seems that bradykinin formation during muscle contraction may play an important part in the observed increase in noradrenaline spillover but does not affect fractional extraction.Key words: skeletal muscle, fractional extraction, stimulation, HOE 140, B2 receptors.


2018 ◽  
Vol 62 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Mateusz Radojewski ◽  
Tomasz Podgórski ◽  
Barbara Pospieszna ◽  
Jakub Kryściak ◽  
Ewa Śliwicka ◽  
...  

Abstract The aim of the study was to evaluate the impact of the competitive phase on physiological and metabolic indices and selected markers of skeletal muscle damage in male volleyball players. The study group consisted of 24 young male volleyball players. During the study, participants underwent two series of measurements, before and after the competitive phase of the annual training cycle. In both study terms, players performed an incremental treadmill running test to determine their ventilatory threshold and maximal oxygen uptake. Venous and capillary blood samples were taken for biochemical analysis. There was no significant difference in the physical fitness level, values of biochemical variables and the level of antioxidant status in the surveyed athletes between the two study terms. Significant changes within skeletal muscle damage markers were observed between the beginning and the end of the competitive period: an increase in the concentration of cellular DNA damage products (8-hydroxy-2′-deoxyguanosine; p < 0.0001) and a decrease in muscle activity of creatine kinase (p<0.05). In spite of the increment in cell damage markers, the unaffected level of physiological and biochemical markers may indicate that the experienced cell destruction did not negatively affect the level of physical fitness. When designing the annual training plan, coaches and athletes need to take into consideration that temporary physiological states – oxidative stress and inflammation – may be required to attain training adaptation.


1986 ◽  
Vol 240 (3) ◽  
pp. 747-751 ◽  
Author(s):  
A M Bassols ◽  
J Carreras ◽  
R Cussó

Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction.


2018 ◽  
Vol 9 (9) ◽  
pp. 4720-4729 ◽  
Author(s):  
Z. Xia ◽  
J. M. Cholewa ◽  
D. Dardevet ◽  
T. Huang ◽  
Y. Zhao ◽  
...  

Oat protein supplementation exhibits protective effects on muscles during eccentric exercise, but more research is needed to clarify the mechanism.


2013 ◽  
Vol 38 (4) ◽  
pp. 401-409 ◽  
Author(s):  
José Magalhães ◽  
Marta Fraga ◽  
José Lumini-Oliveira ◽  
Inês Gonçalves ◽  
Manoel Costa ◽  
...  

Eccentric exercise (EE) is known to induce damage and dysfunction in skeletal muscle. However, the possible role of mitochondrial (dys)function, including the vulnerability to mitochondrial permeability transition pore (MPTP) opening, is unclear. Therefore, this study aimed to analyze the impact of a single acute bout of downhill running on skeletal muscle mitochondrial function. Thirty 12-week-old Charles River CD1 male mice were randomly assigned into control (C) or exercised groups. EE consisted of 120 min of downhill treadmill running at a –16° gradient. Exercised animals were sacrificed immediately (Ecc0h) and 48 h (Ecc48h) after the end of the running bout. Plasma and skeletal muscles were then obtained. Muscle mitochondrial function, including oxygen consumption prior to and after anoxia and reoxygenation, membrane potential, and MPTP opening, were evaluated. Respiratory chain complexI, II, and V activities were determined. EE significantly increased plasma creatine kinase activity (119.4 ± 5.6 vs. 1061.3 ± 46.3 vs. 256.8 ± 15.3 U·L–1, C, Ecc0h and Ecc48h, respectively) and myoglobin and interleukin-6 content. Impaired state 3 and respiratory control ratio (8.4 ± 0.4 vs. 5.6 ± 0.9 vs. 8.4 ± 0.5, C, Ecc0h and Ecc48h, respectively), as well as increased susceptibility to MPTP opening, seen by cyclosporin A-sensitive high swelling amplitude, lower time to maximal swelling velocity (313.8 ± 17.7 vs. 244.5 ± 19.4 vs. 298.5 ± 8.7 s, C, Ecc0h and Ecc48h, respectively), and calcium release immediately after the end of exercise (C vs. Ecc0h) were observed. EE induced a transient impairment in the activity of complex V (C vs. Ecc0h). No significant changes from the C group were observed 48 h after the end of EE (C vs. Ecc48h) in any analyzed parameters. In conclusion, prolonged EE transiently impaired mice skeletal muscle mitochondrial function and increased susceptibility to calcium-induced MPTP opening.


2020 ◽  
Vol 85 (2) ◽  
pp. 440-446
Author(s):  
Toshihide Suzuki ◽  
Makoto Shimizu ◽  
Yoshio Yamauchi ◽  
Ryuichiro Sato

ABSTRACT Polymethoxyflavones (PMFs) contained in the peel of citrus fruits have anti-inflammatory, anticancer, and antidepressant effects. However, their effects on skeletal muscle are unknown. We investigated whether PMFs could prevent skeletal muscle damage induced by eccentric exercise in rats. Downhill running for 90 min increased the levels of the inflammatory cytokines, monocyte chemotactic protein-1 (MCP-1), and interleukin-1β (IL-1β) in skeletal muscles, especially in vastus lateralis, and the plasma creatine kinase levels. These increases were attenuated by a single oral administration of orange peel extract (OPE) 30 min before downhill running. A mixture of nobiletin, sinensetin, 3,5,6,7,8,3′,4′-heptamethoxyflavone, and tangeretin, which are the major PMFs of OPE, also showed similar effects on muscle damage. These results suggest that OPE has a protective effect against eccentric exercise-induced skeletal muscle damage, and that the effects may be attributed to the 4 major PMFs.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Sign in / Sign up

Export Citation Format

Share Document