IGF-1 receptor transactivation mediates Src-dependent cortactin phosphorylation in response to angiotensin IIThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba.

2009 ◽  
Vol 87 (10) ◽  
pp. 805-812 ◽  
Author(s):  
Peter Zahradka ◽  
Benjamin Storie ◽  
Brenda Wright

Release of angiotensin II (Ang II) after vascular injury promotes tissue repair by stimulating phenotypic modulation of smooth muscle cells, which enables cell proliferation and migration. This process requires cytoskeleton remodeling, which involves cortactin, a scaffold protein that is phosphorylated by Src kinase in response to Ang II. Since insulin-like growth factor (IGF)-1 receptor transactivation mediates intracellular signals originating from the Ang II type 1 (AT1) receptor in a Src kinase-dependent manner, we examined whether IGF-1 receptor transactivation was also required for cortactin phosphorylation. Treatment of quiescent smooth muscle cells with Ang II resulted in both cortactin phosphorylation and its translocation to the plasma membrane. Both events were prevented by 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo(3,4-d)pyrimidin-4-amine (PP1), a Src kinase inhibitor, and by AG1024, an inhibitor of the IGF-1 receptor tyrosine kinase. Additionally, PP1 and AG1024 blocked the association of cortactin with actin-related protein (Arp) 3, an actin nucleation factor. These results indicate that Src kinase and the IGF-1 receptor kinase are necessary for activating cortactin. Phosphorylation of Src kinase in Ang II-treated cells was subsequently examined and was shown to be prevented by AG1024. Furthermore, Src kinase phosphorylation was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphatidylinositol (PI) 3-kinase. These data establish that IGF-1 receptor transactivation is required for Src kinase-mediated cortactin phosphorylation and cytoskeletal reorganization in response to Ang II.

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Nwe Nwe Soe ◽  
Mark Sowden ◽  
Patrizia Nigro ◽  
Bradford C Berk

Objective: Cyclophilin A (CyPA) is a ubiquitously expressed cytosolic protein that possesses PPIase activity and scaffold function. CyPA regulates Angiotensin II (Ang II) induced reactive oxygen species (ROS) production in vascular smooth muscle cells. However, the mechanism of this CyPA regulation remains unclear. We hypothesized that CyPA regulates plasma membrane translocation of NADPH oxidase cytosolic subunit, p47phox, which is required for NADPH oxidase structural organization and activity. Methods and results: Immunofluorescence studies in rat aortic smooth muscle cells revealed that CyPA translocated from the cytosol to the plasma membrane in response to Ang II in a time dependent manner with a peak at 10min (46.4±5.4 fold increase). Mouse Aortic Smooth Muscle Cells (MASM) were isolated from mice lacking CyPA (CyPA-/-) and wild type controls (WT), treated with Ang II (100nM) and immunofluorescence analysis was performed. Ang II induced p47phox plasma membrane translocation at 10min in WT mice. However, p47 phox translocation was significantly inhibited in CyPA -/- MASM. CyPA and p47phox colocalized at the plasma membrane in response to Ang II. Further analysis using subcellular fractionation studies confirmed that Ang II induced p47phox plasma membrane translocation was inhibited in CyPA -/- MASM compared to WT (1.2±2.7 vs 4.3±3.4 fold increase). Coimmunoprecipitation analyses confirmed that Ang II increased CyPA association with p47phox in a time dependent manner (2.5±3.4 fold increase at 10min). Finally, pretreatment with the PPIase activity inhibitor, cyclosporine A (1uM), could not inhibit CyPA association with p47phox and CyPA mediated p47phox translocation to the plasma membrane. Conclusion: These data suggest that Ang II promotes an association between CyPA and p47phox that enhances plasma membrane translocation of p47phox. This is proposed to increase the NADPH oxidase activity thereby increasing cellular ROS production. This process is independent of the PPIase activity of CyPA. Therefore, inhibition of the CyPA and p47phox association could be a future therapeutic target for Ang II induced ROS regulated cardiovascular diseases such as atherosclerosis and abdominal aortic aneurysm formation.


2003 ◽  
Vol 284 (2) ◽  
pp. H635-H643 ◽  
Author(s):  
Giovanna Castoldi ◽  
Cira R. T. di Gioia ◽  
Federico Pieruzzi ◽  
Cristina D'Orlando ◽  
Willy M. M. van de Greef ◽  
...  

Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tissue remodeling processes. TIMP-1 is the main native inhibitor of MMPs and it contributes to the development of tissue fibrosis. It is known that ANG II plays a fundamental role in vascular remodeling. In this study, we investigated whether ANG II modulates TIMP-1 expression in rat aortic smooth muscle cells. In vitro, ANG II induces TIMP-1 mRNA expression in a dose-dependent manner. The maximal increase in TIMP-1 expression was present after 3 h of ANG II stimulation. The ANG II increase in TIMP-1 expression was mediated by the ANG type 1 receptors because it was blocked by losartan. The increase in TIMP-1 expression was present after the first ANG II treatment, whereas repeated treatments (3 and 5 times) did not modify TIMP-1 expression. In vivo, exogenous ANG II was administered to Sprague-Dawley rats (200 ng · kg−1· min−1sc) for 6 and 25 days. Control rats received physiological saline. After treatment, systolic blood pressure was significantly higher ( P < 0.01), whereas plasma renin activity was suppressed ( P < 0.01), in ANG II-treated rats. ANG II increased TIMP-1 expression in the aorta of ANG II-treated rats both at the mRNA ( P < 0.05) and protein levels as evaluated by Western blotting ( P < 0.05) and/or immunohistochemistry. Neither histological modifications at the vascular wall nor differences in collagen content in the tunica media were present in both the ANG II- and saline-treated groups. Our data demonstrate that ANG II increases TIMP-1 expression in rat aortic smooth muscle cells. In vivo, both short- and long-term chronic ANG II treatments increase TIMP-1 expression in the rat aorta. TIMP-1 induction by ANG II in aortic smooth muscle cells occurs in the absence of histological changes at the vascular wall.


1997 ◽  
Vol 136 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Junji Shinoda ◽  
Osamu Kozawa ◽  
Atsushi Suzuki ◽  
Yasuko Watanabe-Tomita ◽  
Yutaka Oiso ◽  
...  

Abstract In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholinehydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/l and 0·1 μmol/l. d,l-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1α, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells. European Journal of Endocrinology 136 207–212


2000 ◽  
Vol 278 (1) ◽  
pp. C57-C65 ◽  
Author(s):  
Hiromitsu Nagumo ◽  
Yasuharu Sasaki ◽  
Yoshitaka Ono ◽  
Hiroyuki Okamoto ◽  
Minoru Seto ◽  
...  

In smooth muscle, a Rho-regulated system of myosin phosphatase exists; however, it has yet to be established whether Rho kinase, one of the downstream effectors of Rho, mediates the regulation of myosin phosphatase activity in vivo. In the present study, we demonstrate in permeabilized vascular smooth muscle cells (SMCs) that the vasodilator 1-(5-isoquinolinesulfonyl)-homopiperazine (HA-1077), which we show to be a potent inhibitor of Rho kinase, dose dependently inhibits Rho-mediated enhancement of Ca2+-induced 20-kDa myosin light chain (MLC20) phosphorylation due to abrogating Rho-mediated inhibition of MLC20dephosphorylation. By an immune complex phosphatase assay, we found that guanosine 5′- O-(3-thiotriphosphate) (GTPγS) stimulation of permeabilized SMCs caused a decrease in myosin phosphatase activity with an increase in the extent of phosphorylation of the 130-kDa myosin-binding regulatory subunit (MBS) of myosin phosphatase in a Rho-dependent manner. HA-1077 abolished both of the Rho-mediated events. Moreover, we observed that the pleckstrin homology/cystein-rich domain protein of Rho kinase, a dominant negative inhibitor of Rho kinase, inhibited GTPγS-induced phosphorylation of MBS. These results provide direct in vivo evidence that Rho kinase mediates inhibition of myosin phosphatase activity with resultant enhancement of MLC20phosphorylation in smooth muscle and reveal the usefulness of HA-1077 as a Rho kinase inhibitor.


2011 ◽  
Vol 301 (3) ◽  
pp. H746-H756 ◽  
Author(s):  
Sherif Louis ◽  
Laura Saward ◽  
Peter Zahradka

Angiotensin receptor antagonists have shown clinical promise in modulating vascular disease, in part by limiting smooth muscle cell proliferation and migration. The majority of studies examining the contribution of these receptors have been undertaken in cells derived from rat aorta, which primarily express the ANG II type 1 (AT1) receptor. This investigation studied the relative contribution of AT1 and ANG II type 2 (AT2) receptors to the mitogenic program of porcine smooth muscle cells. Smooth muscle cells were derived from porcine coronary artery explants. The presence of both AT1 and AT2 receptors was demonstrated through ligand binding and RT-PCR analysis. Biochemical and cellular markers of proliferation were monitored in the presence of selective receptor antagonists. Smooth muscle cell migration was measured using both wound healing and Boyden chamber migration assays. Visualization of the AT1 and AT2 receptors in growing and quiescent porcine smooth muscle cells with epifluorescence microscopy demonstrated that their subcellular distribution varied with growth state. An examination with several growth assays revealed that both AT1-specific losartan and AT2-specific PD-123319 receptor antagonists inhibited ANG II-stimulated RNA and DNA synthesis, PCNA expression, and hyperplasia. ANG II induced both directional and nondirectional cell migration. AT1 receptor antagonist treatment significantly decreased ANG II-induced directional migration only, whereas AT2 receptor antagonist treatment significantly reduced both modes of migration. Interestingly, the focal adhesion kinase inhibitor PF-573228 also blocked migration but not proliferation. Furthermore, focal adhesion kinase activation in response to ANG II was prevented only by PD-123319, indicating that this activation is downstream of the AT2 receptor. The observed role of the AT2 receptor in ANG II-induced migration was confirmed with smooth muscle cells depleted of the AT2 receptor with short hairpin RNA treatment.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Nwe Nwe Soe ◽  
Mark Sowden ◽  
Bradford C Berk

Objective: Cyclophilin A (CyPA) is a Secreted OXidative stress-induced Factor (SOXF) secreted by cardiovascular cells in response to Angiotensin II (Ang II) and reactive oxygen species (ROS). Extracellular CyPA is a proinflammatory mediator that regulates vascular remodeling, abdominal aortic aneurysm, atherosclerosis and cardiac hypertrophy. Post-translational modification of CyPA by acetylation in response to ROS has been described. Moreover, acetylation of CyPA is important in HIV pathogenesis. The mechanism and regulation of CyPA acetylation as well as its role in cardiovascular diseases are currently unknown. We hypothesized that Ang II regulates oxidative stress-induced CyPA acetylation that alters its expression and/or secretion in vascular smooth muscle cells. Methods and results: Ang II (1μM) increased acetylation of CyPA (Acyl-CyPA) in a time dependent manner, with a peak at 8hr (3.5±0.6 fold increase) in rat aortic smooth muscle cells (RASMC) as shown by Western blot. Mouse aortic smooth muscle cells from mice lacking CyPA (CyPA-/-) and wild type controls (WT) confirmed that Ang II induced acetylation reactivity coincided exactly with CyPA reactivity. In AT1R and CyPA cotransfected HeLa cells, Ang II increased Acyl-CyPA in a time dependent manner consistent with that in RASMC. The ROS scavengers Tiron or N-acetylcysteine significantly inhibited Ang II induced Acyl-CyPA in a dose dependent manner in RASMC. Ang II-induced CyPA acetylation was enhanced by 2 hr pretreatment with histone deacetylase inhibitor trichostatin (TSA) or sirtinol in a dose dependent manner. Similarly, Ang II-induced CyPA secretion was enhanced by pretreatment with TSA (1μM) in a time dependent manner. Moreover, acetyltransferase p300 and PCAF (p300/CBP-asociated factor) inhibitor anacardic acid (6-nonadecyl salicylic acid) dramatically inhibited CyPA expression, and Ang II induced Acyl-CyPA in a dose dependent manner. Conclusion: These results suggest that Ang II-induced CyPA acetylation is oxidative stress dependent, and that acetylation enhanced CyPA expression and secretion. Detailed mechanistic studies of the regulation of CyPA acetylation will help to identify a future therapeutic target for CyPA regulated cardiovascular diseases.


Author(s):  
Vanessa Truong ◽  
Madhu B Anand-Srivastava ◽  
Ashok K Srivastava

Cyclic adenosine monophosphate response element (CRE) binding protein (CREB) is a nuclear transcription factor that regulates the transcription of several genes containing the CRE sites in their promoters. CREB is activated by phosphorylation on a key serine residue, Ser 311, in response to a wide variety of extracellular stimuli including angiotensin II (Ang II). Ang II is an important vasoactive peptide and mitogen for vascular smooth muscle cells (VSMC) that in addition to regulating the contractile response in VSMC also plays an important role in phenotypic switch of vascular smooth muscle cells (VSMC) from contractile to a synthetic state. The synthetic VSMC are known to exhibit proliferative and migratory properties due to hyperactivation of Ang II-induced signaling events. Ang II has been shown to induce CREB phosphorylation/activation and transcription of genes implicated in proliferation, growth and migration. Here, we have highlighted some key studies that have demonstrated an important role of CREB in Ang II-mediated gene transcription, proliferation, hypertrophy and migration of VSMC.


2016 ◽  
Vol 310 (9) ◽  
pp. H1118-H1128 ◽  
Author(s):  
Rikuo Ochi ◽  
Vidhi Dhagia ◽  
Anand Lakhkar ◽  
Dhara Patel ◽  
Michael S. Wolin ◽  
...  

Voltage-gated L-type Ca2+ current ( ICa,L) induces contraction of arterial smooth muscle cells (ASMCs), and ICa,L is increased by H2O2 in ASMCs. Superoxide released from the mitochondrial respiratory chain (MRC) is dismutated to H2O2. We studied whether superoxide per se acutely modulates ICa,L in ASMCs using cultured A7r5 cells derived from rat aorta. Rotenone is a toxin that inhibits complex I of the MRC and increases mitochondrial superoxide release. The superoxide content of mitochondria was estimated using mitochondrial-specific MitoSOX and HPLC methods, and was shown to be increased by a brief exposure to 10 μM rotenone. ICa,L was recorded with 5 mM BAPTA in the pipette solution. Rotenone administration (10 nM to 10 μM) resulted in a greater ICa,L increase in a dose-dependent manner to a maximum of 22.1% at 10 μM for 1 min, which gradually decreased to 9% after 5 min. The rotenone-induced ICa,L increase was associated with a shift in the current-voltage relationship ( I-V) to a hyperpolarizing direction. DTT administration resulted in a 17.9% increase in ICa,L without a negative shift in I–V, and rotenone produced an additional increase with a shift. H2O2 (0.3 mM) inhibited ICa,L by 13%, and additional rotenone induced an increase with a negative shift. Sustained treatment with Tempol (4-hydroxy tempo) led to a significant ICa,L increase but it inhibited the rotenone-induced increase. Staurosporine, a broad-spectrum protein kinase inhibitor, partially inhibited ICa,L and completely suppressed the rotenone-induced increase. Superoxide released from mitochondria affected protein kinases and resulted in stronger ICa,L preceding its dismutation to H2O2. The removal of nitric oxide is a likely mechanism for the increase in ICa,L.


Sign in / Sign up

Export Citation Format

Share Document