Cerebral blood flow in intoxicated newborn piglets

1987 ◽  
Vol 65 (1) ◽  
pp. 92-95 ◽  
Author(s):  
Cara J. MacIntyre ◽  
Bill Y. Ong ◽  
Daniel S. Sitar

Ethanol exposure in the neonatal period causes impaired brain growth and altered adult behaviour in rats. One possible mechanism may be altered cerebral perfusion caused by ethanol intoxication. We assessed the effects of ethanol on cerebral blood flow and its autoregulation in 2-day-old piglets. Piglets received ethanol (1.4 g/kg) or an equivalent volume of dextrose 5% in water over 30 min. One hour later, cerebral blood flow was measured using the microsphere technique at resting, elevated, and decreased mean arterial blood pressure. Ethanol-treated piglets had total cerebral blood flows of 88 ± 14, 82 ± 10, and 82 ± 12 mL∙100 g−1∙min−1 (mean ± SE) at mean arterial blood pressures of 12.4 ± 1.1, 15.7 ± 1.5, and 8.2 ± 0.9 kPa. Corresponding values in control piglets were 82 ± 14, 78 ± 4, and 82 ± 7 mL∙100 g−1∙min−1 at mean arterial blood pressures of 10.5 ± 1.5, 14.0 ± 1.2, and 7.7 ± 1.1 kPa. At resting arterial blood pressures, regional blood flows to basal ganglia, cortex, brainstem, and cerebellum in ethanol-treated piglets were 123 ± 21, 90 ± 16, 94 ± 17, and 77 ± 12 mL∙100 g−1∙min−1, respectively. Corresponding regional blood flows for the control piglets were 118 ± 16, 85 ± 15, 76 ± 16, and 76 ± 16 mL∙100 g−1∙min−1. Blood flow to basal ganglia was greater than to other brain regions in both ethanol-treated and control piglets (P < 0.01). Total and regional blood flows remained unchanged with altered mean arterial blood pressures, indicating normal autoregulation of cerebral blood flow in both ethanol-treated and control piglets.

1983 ◽  
Vol 3 (2) ◽  
pp. 193-199 ◽  
Author(s):  
A. Lorris Betz ◽  
Fausto Iannotti

Cerebral blood flow (CBF) and unidirectional transport of glucose from blood to brain were measured simultaneously in four brain regions of the pentobarbital-anesthetized gerbil. The method consisted of the intravenous injection of a bolus containing [14C]butanol and [3H]glucose, followed by continuous withdrawal of arterial blood and sampling of brain 25 s later. CBF was lowest in the cerebral cortex (50 ml 100 g−1 min−1), highest in the brainstem (89 ml 100 g−1 min−1), and intermediate in the basal ganglia and cerebellum (66 and 69 ml 100 g−1 min−1, respectively). The kinetics of blood-to-brain glucose transport were measured in animals whose blood glucose concentration had been altered by glucose or insulin injections. The half-saturation constant for glucose transport ( Km) was similar in all brain regions (7.37–8.14 m M), while the maximal rate of transport ( Vmax) was lowest in the cerebral cortex (1.55 μmol g−1 min−1) and significantly higher in the basal ganglia, cerebellum, and brainstem (1.81–2.02 μmol g−1 min−1). These values for CBF and glucose transport are similar to those reported in the literature for other pentobarbital-anesthetized animals. The method provides a simple and rapid technique for determining the effect of ischemia and alterations in CBF on blood-to-brain glucose transport.


1992 ◽  
Vol 263 (3) ◽  
pp. H919-H928 ◽  
Author(s):  
S. M. Bradley ◽  
F. L. Hanley ◽  
B. W. Duncan ◽  
R. W. Jennings ◽  
J. A. Jester ◽  
...  

Successful fetal cardiac bypass might allow prenatal correction of some congenital heart defects. However, previous studies have shown that fetal cardiac bypass may result in impaired fetal gas exchange after bypass. To investigate the etiology of this impairment, we determined whether fetal cardiac bypass causes a redistribution of fetal regional blood flows and, if so, whether a vasodilator (sodium nitroprusside) can prevent this redistribution. We also determined the effects of fetal cardiac bypass with and without nitroprusside on fetal arterial blood gases and hemodynamics. Eighteen fetal sheep were studied in utero under general anesthesia. Seven fetuses underwent bypass without nitroprusside, six underwent bypass with nitroprusside, and five were no-bypass controls. Blood flows were determined using radionuclide-labeled microspheres. After bypass without nitroprusside, placental blood flow decreased by 25–60%, whereas cardiac output increased by 15–25%. Flow to all other fetal organs increased or remained unchanged. Decreased placental blood flow after bypass was accompanied by a fall in PO2 and a rise in PCO2. Nitroprusside improved placental blood flow, cardiac output, and arterial blood gases after bypass. Thus fetal cardiac bypass causes a redistribution of regional blood flow away from the placenta and toward the other fetal organs. Nitroprusside partially prevents this redistribution. Methods of improving placental blood flow in the postbypass period may prove critical to the success of fetal cardiac bypass.


PEDIATRICS ◽  
1982 ◽  
Vol 70 (6) ◽  
pp. 1013-1014
Author(s):  
RAUL BEJAR

Baylen and Emmanouilides give the impression that their abstract was misquoted in our commentary. We would like to explain our interpretation of their data. In the abstract, Baylen et al indicate that they measured regional blood flows (RBF) in premature fetal lambs, expressing them as a percentage of the left ventricular output (LVO) before and after patent ductus arteriosus (PDA) closure. Their results (percent of LVO) before and after PDA closure were: lung, 42.7% vs 8.4% (P &lt; .01); carcass, 35% vs 55% (P &lt; .01); heart, 5.5% vs 10.2% (P &lt; .05); gastrointestinal tract, 5.1% vs 9.3% (P &lt; .05); brain, 2.7% vs 3.4% (P = NS); kidney, 2.2% vs 3.3% (P = NS); liver, 3.2% vs 5.7% (P = NS).


1992 ◽  
Vol 262 (3) ◽  
pp. R538-R541
Author(s):  
P. E. Bickler

Regional cerebral blood flow (CBF) was measured in isoflurane-anesthetized turtles (Pseudemys scripta) by the hydrogen clearance method. Teflon-coated platinum electrodes (25 microns) were implanted in the olfactory bulbs, midcerebral cortex and cerebellum in eight adult turtles. The electrodes were voltage clamped at +0.30 V relative to a Ag-AgCl electrode implanted in the dorsal neck muscles. Washout kinetics of H2 gas administered via controlled ventilation was used to calculate local blood flow for electrodes exhibiting monoexponential washout kinetics of hydrogen (92 of 104 determinations). Data were obtained in animals with body temperatures of 15, 25, and 35 degrees C under normocapnic conditions during ventilation with 21% O2 and during ventilation with 100% N2. During normoxia, mean blood flows were 1.9 +/- 0.8, 5.0 +/- 1.9, and 6.1 +/- 1.3 (+/- SD) ml.100 g-1.min-1 at 15, 25, and 35 degrees C, respectively. There were no differences between CBF values in the different brain regions. During 1-3 h of anoxia, CBF was 3.0 +/- 2.1, 7.0 +/- 3.7, and 6.6 +/- 2.9 ml.100 g-1.min-1 at 15, 25, and 35 degrees C, respectively (normoxia-anoxia difference not statistically different). Hypercarbia (ventilation with 10-20% CO2 in air or N2), or the transition from anoxia to normoxia, increased CBF up to 80% at each of these temperatures. Maintenance of CBF during anoxia likely contributes to the anoxia tolerance of the turtle brain.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


1985 ◽  
Vol 249 (3) ◽  
pp. H485-H491 ◽  
Author(s):  
R. F. Tuma ◽  
G. L. Irion ◽  
U. S. Vasthare ◽  
L. A. Heinel

The purpose of this investigation was to characterize the changes in regional blood flow and central hemodynamic measures that occur in the rat as a result of the aging process. The isotope-labeled microsphere technique was used to measure cardiac output and regional blood flows in conscious and anesthetized adult (12 mo) and senescent (24 mo) Fischer 344 virgin female rats. No significant changes were observed in central hemodynamic measurements or regional blood flows in conscious rats with the exception of a 25% reduction in splenic blood flow. Pentobarbital anesthesia significantly reduced cardiac index and heart rate but elevated total peripheral resistance and mean arterial blood pressure. There was a decrease in blood flow to skeletal muscle, spleen, duodenum, stomach, and brain tissue samples and increased hepatic arterial blood flow in both age groups. The use of anesthesia caused a greater reduction in the cardiac index and brain blood flow in the senescent anesthetized rats than in the adult rats. Heart and kidney blood flows were decreased by anesthesia in the senescent rats but not in the adult rats. Skeletal muscle blood flow, however, was significantly greater in the senescent anesthetized rats than in the younger anesthetized animals. Although body weight and organ weights of the liver, spleen, kidneys, stomach, heart, and brain were significantly greater for the senescent rats, no differences could be demonstrated in tibial length or lean body mass.


1989 ◽  
Vol 257 (5) ◽  
pp. H1656-H1662
Author(s):  
M. Anwar ◽  
H. R. Weiss

The effects of adenosine on regional cerebral blood flow and indexes of the total and perfused microvascular bed were studied after 1 h of middle cerebral artery occlusion in the anesthetized rat. Iodo[14C]antipyrine was used to determine cerebral blood flow. Fluorescein isothiocyanate-dextran was used to study the perfused microvasculature, and an alkaline phosphatase stain was used to identify the total bed. Mean arterial blood pressure was significantly reduced by adenosine. Cerebral blood flow increased significantly by 75%, except in the flow-restricted cortex where flow averaged 28 +/- 15 (SD) ml.min-1.100 g-1 in control and 34 +/- 33 ml.min-1.100 g-1 in adenosine-treated animals. No significant regional structural differences were observed within the microvascular beds of the two groups. The percentage of the microvascular volume perfused increased significantly in all brain regions in the adenosine-treated rats, including the flow-restricted cortex. The percent perfused arteriolar volume in the flow-restricted cortex was 30 +/- 12% in control and 95 +/- 3% in adenosine-treated animals. Similar values for the capillary bed were 22 +/- 10% in control and 54 +/- 3% in adenosine-treated rats. These results indicate a maintenance of flow with a reduction in diffusion distances in the flow-restricted cortex after treatment with adenosine.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (5) ◽  
pp. 733-736
Author(s):  
Margot van de Bor ◽  
Frans J. Walther ◽  
Maureen E. Sims

The pharmacologic effects of cocaine are considered to be secondary to an enhancement of the effects of circulating catecholamines. The effect of intrauterine cocaine exposure on the cerebral blood flow velocity was studied in 20 full-term newborn infants whose urine screens were positive for cocaine and in 18 nonexposed healthy full-term newborn infants whose urine screens were negative for cocaine metabolites. On the first day of life, peak systolic, end diastolic, and mean flow velocities in the pericallosal, internal carotid, and basilar arteries and mean arterial blood pressures were significantly greater in infants who had been exposed to cocaine. On day 2, cerebral blood flow velocities and mean arterial blood pressures were similar in exposed and nonexposed infants. The increase in mean arterial blood pressure and in cerebral blood flow velocity on the first day of life indicates a hemodynamic effect of cocaine that may put the infant exposed to cocaine at a greater risk of intracranial hemorrhage.


1993 ◽  
Vol 264 (2) ◽  
pp. E264-E269 ◽  
Author(s):  
A. M. Carter ◽  
B. S. Richardson ◽  
J. Homan ◽  
M. Towstoless ◽  
J. R. Challis

To determine whether adrenocorticotropic hormone (ACTH) at plasma concentrations measured during mild hypoxemia and at term affects adrenal blood flow, we measured regional blood flows in five unanesthetized normoxemic fetuses (125–130 days gestation) during a 24-h intravenous infusion of ACTH-(1–24) in isotonic saline solution. Another five fetuses received an infusion of vehicle. Blood flows were determined before the infusion, at 2 and 24 h from its onset, and 24 h afterward using radionuclide-labeled microspheres. Blood flow to the adrenal medulla was fivefold greater than that to the adrenal cortex. Adrenal blood flow rose 99% at 24 h of the ACTH infusion. There was a large increase in adrenal cortical blood flow of 272% at this time but medullary blood flow did not change significantly during ACTH infusion. The rise in cortical blood flow was attributable to decreased vascular resistance. No significant alterations occurred in fetal arterial blood pressure and heart rate, or in blood flow to other lower body organs of the fetus or to the placental cotyledons. These findings are consistent with the hypothesis that the increase in adrenal blood flow observed during fetal hypoxia is associated with changes in plasma ACTH concentration. They are also indicative of selective regulation of cortical and medullary blood flows in the sheep fetus at this stage of gestation.


2022 ◽  
Vol 9 ◽  
Author(s):  
Rachel L. Leon ◽  
Eric B. Ortigoza ◽  
Noorjahan Ali ◽  
Dimitrios Angelis ◽  
Joshua S. Wolovits ◽  
...  

Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.


Sign in / Sign up

Export Citation Format

Share Document