Acute effects of ethanol on baroreceptor reflex control of heart rate and on pressor and depressor responsiveness in rats

1987 ◽  
Vol 65 (5) ◽  
pp. 834-841 ◽  
Author(s):  
A-R. A. Abdel-Rahman ◽  
Roy Russ ◽  
J. A. Strickland ◽  
W. R. Wooles

In rats anesthetized with α-chloralose, doses of 0.1, 0.5, and 1 g/kg of ethanol produced an upward shift of baroreflex curves constructed by plotting the heart rate response against mean arterial pressure following evoked rises in mean arterial pressures by phenylephrine or angiotensin II. Whereas the upward shift of baroreceptor curves may be related, at least in part, to a higher base-line heart rate after ethanol, the data showed that the 1 g/kg dose of ethanol significantly depressed baroreflex sensitivity, suggesting that higher doses of ethanol impair baroreflex-mediated bradycardia. The phenylephrine, but not the angiotensin II or the nitroprusside, dose–response curves were shifted to the right after ethanol, indicating a decreased pressor responsiveness and suggesting that ethanol may have α-adrenergic blocking activity. This effect was also obtained in conscious rats. That this effect was not influenced by changes in baroreflex sensitivity was supported by the finding that a similar shift of the phenylephrine pressor–response curve was obtained in bilaterally vagotomized and hexamethonium-treated rats. Whether this effect of ethanol on baroreflex control of heart rate was influenced by anesthesia was investigated in conscious rats; the 1 g/kg dose of ethanol that produced the most significant decrease in baroreflex sensitivity was used in these experiments. Ethanol was still able to significantly inhibit baroreflex sensitivity in conscious rats, but the upward shift of the baroreflex curve and the elevated base-line heart rate no longer occurred. On the other hand, none of the three doses of ethanol had any significant effect on baroreflex-mediated tachycardia (in response to nitroprusside-evoked hypotension). The data suggest that high doses of ethanol selectively inhibit baroreflex-mediated bradycardia and that ethanol has an α-blocking-like activity in conscious and anesthetized rats.

1990 ◽  
Vol 69 (3) ◽  
pp. 962-967 ◽  
Author(s):  
J. T. Sullebarger ◽  
C. S. Liang ◽  
P. D. Woolf ◽  
A. E. Willick ◽  
J. F. Richeson

Phenylephrine (PE) bolus and infusion methods have both been used to measure baroreflex sensitivity in humans. To determine whether the two methods produce the same values of baroreceptor sensitivity, we administered intravenous PE by both bolus injection and graded infusion methods to 17 normal subjects. Baroreflex sensitivity was determined from the slope of the linear relationship between the cardiac cycle length (R-R interval) and systolic arterial pressure. Both methods produced similar peak increases in arterial pressure and reproducible results of baroreflex sensitivity in the same subjects, but baroreflex slopes measured by the infusion method (9.9 +/- 0.7 ms/mmHg) were significantly lower than those measured by the bolus method (22.5 +/- 1.8 ms/mmHg, P less than 0.0001). Pretreatment with atropine abolished the heart rate response to PE given by both methods, whereas plasma catecholamines were affected by neither method of PE administration. Naloxone pretreatment exaggerated the pressor response to PE and increased plasma beta-endorphin response to PE infusion but had no effect on baroreflex sensitivity. Thus our results indicate that 1) activation of the baroreflex by the PE bolus and infusion methods, although reproducible, is not equivalent, 2) baroreflex-induced heart rate response to a gradual increase in pressure is less than that seen with a rapid rise, 3) in both methods, heart rate response is mediated by the vagus nerves, and 4) neither the sympathetic nervous system nor the endogenous opiate system has a significant role in mediating the baroreflex control of heart rate to a hypertensive stimulus in normal subjects.


1983 ◽  
Vol 244 (2) ◽  
pp. H253-H258 ◽  
Author(s):  
M. Burnier ◽  
H. R. Brunner

The pressor response to lysine vasopressin was tested in groups of male Wistar, Brattleboro, Wistar-Kyoto, and spontaneously hypertensive rats. Moreover, the influence of sodium intake, angiotensin II, saralasin, captopril, norepinephrine, and isoproterenol on vasopressin pressor responses was evaluated. The right iliac artery and one or both femoral veins of the animals were catheterized under light ether anesthesia. The experiments were carried out following a 2-h stabilization period with the rats awake and semirestrained. Pressor responsiveness was evaluated acutely on the basis of dose-response curves (0.5-4 mU). In the Wistar rats, angiotensin II (10 and 30 ng/min) and isoproterenol (10 ng/min) markedly decreased the response to vasopressin, whereas variations in sodium intake and blood pressure per se did not seem to exert any influence. Norepinephrine (250 ng/min) slightly enhanced the pressor responsiveness to the smaller doses of lysine-vasopressin. Brattleboro rats with congenital diabetes insipidus were less sensitive to vasopressin than the other animals, and neither angiotensin II nor isoproterenol induced any change. In conclusion, the pressor responsiveness to vasopressin can vary considerably depending on several factors. These must be taken into account when evaluating the possible pressor role of vasopressin in experimental and clinical settings.


2000 ◽  
Vol 92 (1) ◽  
pp. 197-197 ◽  
Author(s):  
Kyoung S. K. Chang ◽  
Don R. Morrow ◽  
Kazuyo Kuzume ◽  
Michael C. Andresen

Background Because exposure to intravenously administered bupivacaine may alter cardiovascular reflexes, the authors examined bupivacaine actions on baroreflex control of heart rate in conscious rats. Methods Baroreflex sensitivity (pulse interval vs. systolic blood pressure in ms/mmHg) was determined before, and 1.5 and 15.0 min after rapid intravenous administration of bupivacaine (0.5, 1.0, and 2.0 mg/kg) using heart rate changes evoked by intravenously administered phenylephrine or nitroprusside. The actions on the sympathetic and parasympathetic autonomic divisions of the baroreflex were tested in the presence of a muscarinic antagonist methyl atropine and a beta-adrenergic antagonist atenolol. Results Within seconds of injection of bupivacaine, mean arterial pressure increased and heart rate decreased in a dose-dependent manner. Baroreflex sensitivity was unaltered after administration of 0.5 mg/kg bupivacaine. In addition, 1 mg/kg bupivacaine at 1.5 min depressed phenylephrine-evoked reflex bradycardia (0.776 +/- 0.325 vs. 0.543 +/- 0.282 ms/mmHg, P < 0.05) but had no effect on nitroprusside-induced tachycardia. Bupivacaine (2 mg/kg), however, depressed reflex bradycardia and tachycardia (phenylephrine, 0.751 +/- 0.318 vs. 0.451 +/- 0.265; nitroprusside, 0.839 +/- 0.256 vs. 0.564 +/- 0.19 ms/mmHg, P < 0.05). Baroreflex sensitivity returned to prebupivacaine levels by 15 min. Bupivacaine (2 mg/kg), in the presence of atenolol, depressed baroreflex sensitivity (phenylephrine, 0.633 +/- 0.204 vs. 0.277 +/- 0.282; nitroprusside, 0.653 +/- 0.142 vs. 0.320 +/- 0.299 ms/mmHg, P < 0.05). In contrast, bupivacaine did not alter baroreflex sensitivity in the presence of methyl atropine. Conclusions Bupivacaine, in clinically relevant concentrations, inhibits baroreflex control of heart rate in conscious rats. This inhibition appears to involve primarily vagal components of the baroreflex-heart rate pathways.


1992 ◽  
Vol 262 (3) ◽  
pp. R472-R477 ◽  
Author(s):  
K. P. Conrad ◽  
R. D. Russ

The goal of the present study was to examine baroreflex control of heart rate during pregnancy in chronically instrumented unrestrained rats. The same rats (n = 6) were studied before conception, again on gestational days 5, 12, and 19, and last on postpartum day 6; thus each rat served as its own control. Time control experiments were also conducted in a separate group of virgin rats (n = 7). Resting mean arterial pressure decreased by 10 mmHg on gestational day 19 (P less than 0.01 vs. prepregnant), and heart rate significantly increased by approximately 10% relative to time control rats. Dose-response curves were constructed for methoxamine and sodium nitroprusside comparing the various dosages with systemic pressor and depressor responses, respectively. The dose-response relationship for methoxamine was shifted to the right in gravid rats of 19 gestational days (P less than 0.03 vs. prepregnant), indicating an attenuation of alpha-adrenergic receptor-mediated pressor responsiveness. In contrast, depressor responses to sodium nitroprusside were not significantly altered in pregnancy. Baroreflex-mediated bradycardia was unchanged until gestational day 19, when enhanced bradycardia responses to methoxamine were observed. Baroreflex-mediated tachycardic responses elicited by sodium nitroprusside were not affected at any stage of pregnancy. Baroreflex control of heart rate did not change significantly with either increases or decreases of blood pressure in time control experiments. We conclude that during late pregnancy in conscious rats 1) resting blood pressure decreases and heart rate increases, 2) systemic pressor responses to methoxamine are diminished, and 3) baroreflex-mediated bradycardia is enhanced.


2010 ◽  
Vol 298 (2) ◽  
pp. H594-H600 ◽  
Author(s):  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
Matthew Coutsos ◽  
Zhenhua Li ◽  
Dominic Fano ◽  
...  

Ischemia of active skeletal muscle elicits a pressor response termed the muscle metaboreflex. We tested the hypothesis that in normal dogs during dynamic exercise, graded muscle metaboreflex activation (MMA) would progressively attenuate spontaneous heart rate baroreflex sensitivity (SBRS). The animals were chronically instrumented to measure heart rate (HR), cardiac output (CO), mean and systolic arterial pressure (MAP and SAP), and left ventricular systolic pressures (LVSP) at rest and during mild or moderate treadmill exercise before and during progressive MMA [via graded reductions of hindlimb blood flow (HLBF)]. SBRS [slopes of the linear relationships (LRs) between HR and LVSP or SAP during spontaneous sequences of ≥3 consecutive beats when HR changed inversely vs. pressure] decreased during mild exercise from the resting values (−5.56 ± 0.86 vs. −2.67 ± 0.50 beats·min−1·mmHg−1, P <0.05), and in addition, these LRs were shifted upward. Progressive MMA gradually and linearly increased MAP, CO, and HR; linearly decreased SBRS; and shifted LRs upward and rightward to higher HR and pressures denoting baroreflex resetting. Moderate exercise caused a substantial reduction in SBRS (−1.57 ± 0.38 beats·min−1·mmHg−1, P <0.05) and both an upward and rightward resetting. Gradual MMA at this higher workload also caused significant progressive increases in MAP, CO, and HR and progressive decreases in SBRS, and the LRs were shifted to higher MAP and HR. Our results demonstrate that gradual MMA during mild and moderate dynamic exercise progressively decreases SBRS. In addition, baroreflex control of HR is progressively reset to higher blood pressure and HR in proportion to the extent of MMA.


2002 ◽  
Vol 96 (5) ◽  
pp. 1214-1222 ◽  
Author(s):  
Jong S. Lee ◽  
Don Morrow ◽  
Michael C. Andresen ◽  
Kyoung S. K. Chang

Background Isoflurane inhibits baroreflex control of heart rate (HR) by poorly understood mechanisms. The authors examined whether suprapontine central nervous system cardiovascular regulatory sites are required for anesthetic depression. Methods The effects of isoflurane (1 and 2 rat minimum alveolar concentration [MAC]) on the baroreflex control of HR were determined in sham intact and midcollicular-transected decerebrate rats. Intravenous phenylephrine (0.2-12 microg/kg) and nitroprusside (1-60 microg/kg) were used to measure HR responses to peak changes in mean arterial pressure (MAP). Sigmoidal logistic curve fits to HR-MAP data assessed baroreflex sensitivity (HR/MAP), HR range, lower and upper HR plateau, and MAP at half the HR range (BP50). Four groups (two brain intact and two decerebrate) were studied before, during, and after isoflurane. To assess sympathetic and vagal contributions to HR baroreflex, beta-adrenoceptor (1 mg/kg atenolol) or muscarinic (0.5 mg/kg methyl atropine) antagonists were administered systemically. Results Decerebration did not alter resting MAP and HR or baroreflex parameters. Isoflurane depressed baroreflex slope and HR range in brain-intact and decerebrate rats. In both groups, 1 MAC reduced HR range by depressing peak reflex tachycardia. Maximal reflex bradycardia during increases in blood pressure was relatively preserved. Atenolol during 1 MAC did not alter maximum reflex tachycardia. In contrast, atropine during 1 MAC fully blocked reflex bradycardia. Therefore, 1 MAC predominantly depresses sympathetic components of HR baroreflex. Isoflurane at 2 MAC depressed both HR plateaus and decreased BP50 in both groups. Conclusions Isoflurane depresses HR baroreflex control by actions that do not require suprapontine central nervous system sites. Isoflurane actions seem to inhibit HR baroreflex primarily by the sympathetic nervous system.


2006 ◽  
Vol 290 (4) ◽  
pp. R1027-R1034 ◽  
Author(s):  
Andréia C. Alzamora ◽  
Robson A. S. Santos ◽  
Maria J. Campagnole-Santos

We determined the effect of microinjection of ANG-(1–7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1–7) and ANG II (25 pmol) after RVLM microinjection (11 ± 0.8 and 10 ± 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1–7) and ANG II produced hypotension (−11 ± 1.5 and −11 ± 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1–7) attenuated the baroreflex bradycardia (0.26 ± 0.06 ms/mmHg vs. 0.42 ± 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 ± 0.19 ms/mmHg vs. 0.42 ± 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 ± 0.06 ms/mmHg vs. 0.31 ± 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 ± 0.16 ms/mmHg vs. 0.41 ± 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1–7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1–7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


Sign in / Sign up

Export Citation Format

Share Document