The effects of pH on force and stiffness development in mouse muscles

1987 ◽  
Vol 65 (8) ◽  
pp. 1798-1801 ◽  
Author(s):  
J. M. Renaud ◽  
R. B. Stein ◽  
T. Gordon

Changes in force and stiffness during contractions of mouse extensor digitorum longus and soleus muscles were measured over a range of extracellular pH from 6.4 to 7.4. Muscle stiffness was measured using small amplitude (<0.1% of muscle length), high frequency (1.5 kHz) oscillations in length. Twitch force was not significantly affected by changes in pH, but the peak force during repetitive stimulation (2, 3, and 20 pulses) was decreased significantly as the pH was reduced. Changes in muscle stiffness with pH were in the same direction, but smaller in extent. If the number of attached cross-bridges in the muscle can be determined from the measurement of small amplitude, high frequency muscle stiffness, then these findings suggest that (a) the number of cross-bridges between thick and thin filaments declines in low pH and (b) the average force per cross-bridge also declines in low pH. The decline in force per cross-bridge could arise from a reduction in the ability of cross-bridges to generate force during their state of active force production and (or) in an increased percentage of bonds in a low force, "rigor" state.

1975 ◽  
Vol 66 (3) ◽  
pp. 287-302 ◽  
Author(s):  
F J Julian ◽  
M R Sollins

Single frog skeletal muscle fibers were attached to a servo motor and force transducer by knotting the tendons to pieces of wire at the fiver insertions. Small amplitude, high frequency sinusoidal length changes were then applied during tetani while fibers contracted both isometrically and isotonically at various constant velocities. The amlitude of the resulting force oscillation provides a relative measure of muscle stiffness. It is shown from an analysis of the transient force responses observed after sudden changes in muscle length applied both at full and reduced overlap and during the rising phase of short tetani that these responses can be explained on the basis of varying numbers of cross bridges attached at the time of the length step. Therefore, the stiffness measured by the high frequency legth oscillation method is taken to be directly proportional to the number of cross bridges attached to thin filament sittes. It is found that muscle stiffness measured in this way falls with increasing shortening velocity, but not as rapidly as the force. The results suggest that at the maximum velocity of shortening, when the external force is zero, muscle stiffness is still substantial. The findings are interpreted in terms of a specific model for muscle contraction in which the maximum velocity of shortening under zero external load arises when a force balance is attained between attached cross bridges somr interpretations of these results are also discussed.


2000 ◽  
Vol 89 (3) ◽  
pp. 869-876 ◽  
Author(s):  
Chun Y. Seow ◽  
Victor R. Pratusevich ◽  
Lincoln E. Ford

Force-velocity curves measured at different times during tetani of sheep trachealis muscle were analyzed to assess whether velocity slowing could be explained by thick-filament lengthening. Such lengthening increases force by placing more cross bridges in parallel on longer filaments and decreases velocity by reducing the number of filaments spanning muscle length. From 2 s after the onset of stimulation, when force had achieved 42% of it final value, to 28 s, when force had been at its tetanic plateau for ∼15 s, velocity decreases were exactly matched by force increases when force was adjusted for changes in activation, as assessed from the maximum power value in the force-velocity curves. A twofold change in velocity could be quantitatively explained by a series-to-parallel change in the filament lattice without any need to postulate a change in cross-bridge cycling rate.


2004 ◽  
Vol 96 (2) ◽  
pp. 655-667 ◽  
Author(s):  
Richard A. Meiss ◽  
Ramana M. Pidaparti

Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment. During the vibration, peak muscle force fell exponentially with successive forced elongations. After the episode, the muscle either extended itself or exerted a force against the tension transducer, depending on external conditions. The magnitude of this effect was proportional to the prior muscle stiffness and the amplitude of the vibration, indicating a recoil of strained connective tissue elements no longer opposed by cross-bridge forces. This behavior suggests that mechanical behavior at short lengths is dominated by tissue forces within a tensegrity-like structure made up of connective tissue, other extracellular matrix components, and active contractile elements.


1998 ◽  
Vol 274 (5) ◽  
pp. C1306-C1311 ◽  
Author(s):  
C. Y. Seow ◽  
L. Morishita ◽  
B. H. Bressler

Direct action of the cardiotonic bipyridine milrinone on the cross bridges of single fibers of skinned rabbit skeletal muscle was investigated. At 10°C and pH 7.0, milrinone reduced isometric tension in a logarithmically concentration-dependent manner, with a 55% reduction in force at 0.6 mM. Milrinone also reduced Ca2+ sensitivity of skinned fibers in terms of force production; the shift in the force-pCa curve indicated a change in the pCa value at 50% maximal force from 6.10 to 5.94. The unloaded velocity of shortening was reduced by 18% in the presence of 0.6 mM milrinone. Parts of the transient tension response to step change in length were altered by milrinone, so that the test and control transients could not be superimposed. The results indicate that milrinone interferes with the cross-bridge cycle and possibly detains cross bridges in low-force states. The results also suggest that the positive inotropic effect of milrinone on cardiac muscle is probably not due to the drug’s direct action on the muscle cross bridges. The specific and reversible action of the bipyridine on muscle cross bridges makes it a potentially useful tool for probing the chemomechanical cross-bridge cycle.


2001 ◽  
Vol 280 (4) ◽  
pp. H1513-H1518 ◽  
Author(s):  
Li Lu ◽  
Ya Xu ◽  
Peili Zhu ◽  
Clifford Greyson ◽  
Gregory G. Schwartz

Mechanical properties of the myocardium at end diastole have been thought to be dominated by passive material properties rather than by active sarcomere cross-bridge interactions. This study tested the hypothesis that residual cross-bridges significantly contribute to end-diastolic mechanics in vivo and that changes in end-diastolic cross-bridge interaction parallel concurrent changes in systolic cross-bridge interaction. Open-chest anesthetized pigs were treated with intracoronary verapamil ( n = 7) or 2,3-butanedione monoxime (BDM; n = 8). Regional left ventricular external work and end-diastolic pressure (EDP) versus end-diastolic segment length (EDL) relations were determined in the treated and untreated regions of each heart. Both agents reduced external work of treated regions to 31–38% of baseline and concurrently shifted EDP versus EDL relations to the right (i.e., greater EDL at a given EDP) by an average of 5% ( P < 0.05). During washout of the drugs, EDP versus EDL returned to baseline in parallel with recovery of external work. Sarcomere length, measured by transmission electron microscopy in BDM-treated and untreated regions of the same hearts after diastolic arrest and perfusion fixation, was 8% greater in BDM-treated regions ( P < 0.01). We concluded that residual diastolic cross-bridges significantly and reversibly influence end-diastolic mechanics in vivo. Alterations of end-diastolic and systolic cross-bridge interactions occur in parallel.


1995 ◽  
Vol 198 (12) ◽  
pp. 2491-2499 ◽  
Author(s):  
J Layland ◽  
I S Young ◽  
J D Altringham

The influence of length on work production was investigated for rat papillary muscles using the work loop technique. Active and passive length-force relationships were first determined under isometric conditions and the length for maximum force production (Lmax) was derived. Starting from different lengths within the physiological range, a series of work loops was generated using the stimulation phase shift, strain amplitude and cycle frequency previously found to be optimal for power output at 37 degrees C. The relationship between muscle length and net work was used to determine the length at which work output was maximal (Lopt). In order to examine the dynamic passive properties of the muscles, unstimulated muscles were subjected to the same regime of sinusoidal oscillation as used for the active loops. From the hysteresis loops, lengthening work (work done to extend the passive muscle), passive shortening work (work returned during shortening) and net energy loss (hysteresis) could be measured. The decline in net work production at lengths greater than 95% Lmax could largely be attributed to the rapid and non-linear increase in muscle stiffness and the increase in net energy loss over this range of lengths. The physiological significance of the length-work relationship is considered and the mechanical properties of active and passive papillary muscles are discussed with reference to sarcomere length and cardiac muscle ultrastructure.


2017 ◽  
Vol 123 (1) ◽  
pp. 88-105 ◽  
Author(s):  
Hojeong Kim

Persistent inward current (PIC)-generating Cav1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity. NEW & NOTEWORTHY Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem.


1990 ◽  
Vol 258 (3) ◽  
pp. H861-H869 ◽  
Author(s):  
W. J. Leijendekker ◽  
W. D. Gao ◽  
H. E. ter Keurs

The stiffness of rat cardiac trabeculae was measured in vitro to distinguish between an increase in unstimulated force (Fu) caused by rapid cycling of cross bridges or caused by rigor bridges during hypoxia. The force was measured with a strain gauge, the sarcomere length was determined by laser diffraction techniques, and muscle length was controlled by means of a motor. Stiffness was analyzed by using small (less than 1% of muscle length) sinusoidal length perturbations of 1 and 100 Hz. The stiffness at 100 Hz increased linearly with force during tetani at a varied [Sr2+] (0.25-10 mM) in the Krebs-Henseleit (K-H) buffer, but remained virtually unchanged at 1 Hz. In contrast, the stiffness of both the passive muscle and the muscle exposed to either CN- or to PO2 less than 1.5 mmHg up to development of maximal Fu (Fumax) was similar at 1- and 100-Hz perturbations. Less profound hypoxia (PO2 6-10 mmHg) resulted in spontaneous sarcomere activity during the rise in Fu, and an increase in the ratio of stiffness at 100 Hz to stiffness at 1 Hz was detected. When oxidative phosphorylation was inhibited by CN- (2 mM) while the muscle was stimulated in the absence of both Ca2+ and Na+ (choline+substituted), the addition of Na+ at the time at which Fu had reached 30-40% of Fumax did not affect the rate of rise of Fu. These results show that the development of Fu during more complete anoxia in rat trabeculae is completely due to the formation of rigor links and that Ca2(+)-dependent cross-bridge activation can contribute to the rise in Fu during less severe hypoxia.


2019 ◽  
Vol 317 (2) ◽  
pp. C226-C234
Author(s):  
Axel J. Fenwick ◽  
Peter O. Awinda ◽  
Jacob A. Yarbrough-Jones ◽  
Jennifer A. Eldridge ◽  
Buel D. Rodgers ◽  
...  

Limb-girdle muscular dystrophy 2i (LGMD2i) is a dystroglycanopathy that compromises myofiber integrity and primarily reduces power output in limb muscles but can influence cardiac muscle as well. Previous studies of LGMD2i made use of a transgenic mouse model in which a proline-to-leucine (P448L) mutation in fukutin-related protein severely reduces glycosylation of α-dystroglycan. Muscle function is compromised in P448L mice in a manner similar to human patients with LGMD2i. In situ studies reported lower maximal twitch force and depressed force-velocity curves in medial gastrocnemius (MG) muscles from male P448L mice. Here, we measured Ca2+-activated force generation and cross-bridge kinetics in both demembranated MG fibers and papillary muscle strips from P448L mice. Maximal activated tension was 37% lower in MG fibers and 18% lower in papillary strips from P448L mice than controls. We also found slightly faster rates of cross-bridge recruitment and detachment in MG fibers from P448L than control mice. These increases in skeletal cross-bridge cycling could reduce the unitary force output from individual cross bridges by lowering the ratio of time spent in a force-bearing state to total cycle time. This suggests that the decreased force production in LGMD2i may be due (at least in part) to altered cross-bridge kinetics. This finding is notable, as the majority of studies germane to muscular dystrophies have focused on sarcolemma or whole muscle properties, whereas our findings suggest that the disease pathology is also influenced by potential downstream effects on cross-bridge behavior.


1999 ◽  
Vol 276 (5) ◽  
pp. H1460-H1467 ◽  
Author(s):  
D. R. Swartz ◽  
D. Zhang ◽  
K. W. Yancey

Striated muscle contracts in the absence of calcium at low concentrations of MgATP ([MgATP]), and this has been termed rigor activation because rigor cross bridges attach and activate adjacent actin sites. This process is well characterized in skeletal muscle but not in cardiac muscle. Rigor cross bridges are also thought to increase calcium binding to troponin C and play a synergistic role in activation. We tested the hypothesis that cross bridge-dependent activation results in an increase in contractile activity at normal and low pH values. Myofibrillar ATPase activity was measured as a function of pCa and [MgATP] at pH 7.0, and the data showed that, at pCa values of ≥5.5, there was a biphasic relationship between activity and [MgATP]. Peak activity occurred at 10–50 μM MgATP, and [MgATP] for peak activity was lower with increased pCa. The ATPase activity of rat cardiac myofibrils as a function of [MgATP] at a pCa of 9.0 was measured at several pH levels (pH 5.4–7.0). The ATPase activity as a function of [MgATP] was biphasic with a maximum at 8–10 μM MgATP. Lower pH did not result in a substantial decrease in myofibrillar ATPase activity even at pH 5.4. The extent of shortening, as measured by Z-line spacing, was greatest at 8 μM MgATP and less at both lower and higher [MgATP], and this response was observed at all pH levels. These studies suggest that the peak ATPase activity associated with low [MgATP] was coupled to sarcomere shortening. These results support the hypothesis that cross bridge-dependent activation of contraction may be responsible for contracture in the ischemic heart.


Sign in / Sign up

Export Citation Format

Share Document