Investigating the role of angiotensin II in thirst: Interactions between arterial pressure and the control of drinking

1992 ◽  
Vol 70 (5) ◽  
pp. 791-797 ◽  
Author(s):  
Mark D. Evered

Several lines of evidence suggest that angiotensin II plays a physiological role in the control of thirst. Establishing that, however, has been surprisingly difficult, given our current knowledge about the renin–angiotensin systems in the circulation and the brain and the variety of techniques available to measure and manipulate them. A major problem is that stimulating or blocking the renin–angiotensin system affects several physiological variables simultaneously. Since several of these variables also influence the controls of water intake directly or indirectly, the interpretation of the effect on drinking becomes more difficult. To illustrate the problem and recent developments, this paper describes some of the interactions between the effects of angiotensin II on arterial pressure and thirst, and it shows how they have contributed to the controversy over the physiological role of the peptide.Key words: renin–angiotensin system, thirst, arterial pressure.

1981 ◽  
Vol 240 (1) ◽  
pp. R75-R80 ◽  
Author(s):  
M. C. Lee ◽  
T. N. Thrasher ◽  
D. J. Ramsay

The role of the renin-angiotensin system in drinking induced by water deprivation and caval ligation was assessed by infusion of saralasin into the lateral ventricles of rats. This technique was first validated by demonstrating its capability to specifically antagonize drinking to both systemic and central angiotensin II. However, neither the latency to drink nor the amount of water consumed following 24- or 30-h water deprivation was affected by saralasin. Furthermore, saralasin had no significant effect on the recovery of blood pressure or on the water intake following ligation of the abdominal vena cava. These observations suggest that the renin-angiotensin system alone does not play an essential role in the control of drinking following water deprivation or caval ligation in rats.


Endocrinology ◽  
1981 ◽  
Vol 109 (1) ◽  
pp. 290-295 ◽  
Author(s):  
WAYNE L. FOWLER ◽  
J. ALAN JOHNSON ◽  
KENNETH D. KURZ ◽  
JEANNETTE KILFOIL ◽  
SANDRA LOVE ◽  
...  

2005 ◽  
Vol 288 (4) ◽  
pp. F614-F625 ◽  
Author(s):  
Dinesh M. Shah

Preeclampsia is a hypertensive disorder unique to pregnancy with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression observed both in human preeclampsia and in a transgenic mouse model with a human preeclampsia-like syndrome supports the concept that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. A novel disease paradigm of the two-kidney one-clip (2K-1C) Goldblatt model is presented for preeclampsia, wherein the gravid uterus is the clipped “kidney” and the two maternal kidneys represent the unclipped kidney. Validation of the 2K-1C Goldblatt model analogy requires evidence of elevated angiotensin II in the peripheral circulation before vascular maladaptation in preeclampsia. Convincing evidence of the elevation of angiotensin II in preeclampsia does not exist despite the fact that much of vascular pathogenesis appears to be due to angiotensin type I (AT1) receptor activation. Vascular maladaptation with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1and bradykinin B2receptor heterodimerization and the production of an autoantibody against AT1. Various organ systems with a predilection for involvement in preeclampsia are each a site of a tissue-based RAS. How angiotensin II-mediated mechanisms may explain the primary clinical-pathological features of preeclampsia is described. Future investigations are proposed to more precisely define the role of activation of the uteroplacental RAS in the mechanisms underlying preeclampsia.


1969 ◽  
Vol 173 (1032) ◽  
pp. 317-325 ◽  

An outline of the development of knowledge of the renin-angiotensin system is given, and the nature of the enzyme renin, its site within the kidney as well as in other organs, and its action on plasma substrate to form first the decapeptide which is converted to the biologically active octapeptide, are considered. The methods of measurement of renin and angiotensin in body fluids are discussed and the factors causing increased or decreased secretion of renin into the blood stream related to physiological and pathological situations. The role of angiotensin as a pressor agent, vasoconstrictor and stimulator of aldosterone production is assessed in the light of current knowledge.


2019 ◽  
Vol 32 (12) ◽  
pp. 1133-1142 ◽  
Author(s):  
Daniela Medina ◽  
Amy C Arnold

Abstract Despite decades of research and numerous treatment approaches, hypertension and cardiovascular disease remain leading global public health problems. A major contributor to regulation of blood pressure, and the development of hypertension, is the renin-angiotensin system. Of particular concern, uncontrolled activation of angiotensin II contributes to hypertension and associated cardiovascular risk, with antihypertensive therapies currently available to block the formation and deleterious actions of this hormone. More recently, angiotensin-(1–7) has emerged as a biologically active intermediate of the vasodilatory arm of the renin-angiotensin system. This hormone antagonizes angiotensin II actions as well as offers antihypertensive, antihypertrophic, antiatherogenic, antiarrhythmogenic, antifibrotic and antithrombotic properties. Angiotensin-(1–7) elicits beneficial cardiovascular actions through mas G protein-coupled receptors, which are found in numerous tissues pivotal to control of blood pressure including the brain, heart, kidneys, and vasculature. Despite accumulating evidence for favorable effects of angiotensin-(1–7) in animal models, there is a paucity of clinical studies and pharmacokinetic limitations, thus limiting the development of therapeutic agents to better understand cardiovascular actions of this vasodilatory peptide hormone in humans. This review highlights current knowledge on the role of angiotensin-(1–7) in cardiovascular control, with an emphasis on significant animal, human, and therapeutic research efforts.


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


Sign in / Sign up

Export Citation Format

Share Document