Separation and modulation of calcium currents in bullfrog sympathetic neurons

1992 ◽  
Vol 70 (S1) ◽  
pp. S56-S63 ◽  
Author(s):  
Stephen W. Jones ◽  
Keith S. Elmslie

The calcium current of frog sympathetic neurons has relatively rapid activation kinetics (τ < 3 ms) in response to changes in voltage. Pharmacologically, the current is blocked ~90% by ω-conotoxin, but < 10% by dihydropyridine antagonists. This suggests that nearly all of the current is N type. However, inactivation is slow and incomplete even for depolarizations lasting > 1 s, consistent with recent evidence that N-type channels do not always inactivate rapidly. The calcium current is partially inhibited via receptors for acetylcholine, luteinizing hormone releasing hormone, substance P, ATP, and norepinephrine. These effects are mimicked by internal dialysis with GTP-γ-S, suggesting involvement of a G protein. The transmitters affect the activation kinetics of the calcium current in a voltage-dependent manner, which can be modeled as a reversible shift of some channels to "reluctant" states in which strong depolarization is needed to produce channel opening. The effects of transmitters develop and recover with t½ ~ 1–2 s, so if a second messenger is involved in receptor – calcium channel coupling, it must act rapidly.Key words: norepinephrine, ω-conotoxin, dihydropyridine, inactivation, G protein.

1995 ◽  
Vol 74 (6) ◽  
pp. 2251-2257 ◽  
Author(s):  
I. Ehrlich ◽  
K. S. Elmslie

1. We studied the mechanism of voltage-dependent inhibition of N-type calcium current by norepinephrine (NE) and vasoactive intestinal peptide (VIP) in adult rat superior cervical ganglion (SCG) neurons using the whole cell patch-clamp technique. 2. The voltage dependence of inhibition is manifest in the reversal of inhibition by strong depolarization. We tested the hypothesis that this voltage dependence results from disruption of G proteins binding to calcium channels. According to this hypothesis, the kinetics of calcium current reinhibition following a strong depolarization should become faster for higher concentrations of active G proteins. 3. Assuming that larger inhibitions result from higher concentrations of active G proteins, we used different concentrations of NE to alter the amplitude of inhibition and, thus, the active G protein concentration. We found that the kinetics of reinhibition at -80 mV following a depolarizing pulse to +80 mV were faster for larger inhibitions. 4. VIP induces voltage-dependent inhibition of N-current via a different G protein (Gs) than that of NE (Go). We found that the effect of VIP on reinhibition kinetics was identical to that produced by NE. 5. Combined application of NE and VIP did not greatly increase the amplitude of the inhibition but significantly increased the rate of reinhibition. Thus NE plus VIP appear to greatly increase the concentration of the molecule binding to the channel (G protein according to the hypothesis). 6. The kinetics of calcium current disinhibition during strong depolarization (step to +80 mV) did not change with the size of the inhibition induced by NE, VIP or application of NE and VIP together. 7. Both the concentration-dependent reinhibition kinetics and concentration-independent disinhibition kinetics are consistent with the hypothesis that active G proteins bind directly to N-type calcium channels to modulate their activity in rat sympathetic neurons.


2000 ◽  
Vol 84 (5) ◽  
pp. 2417-2425 ◽  
Author(s):  
Debra E. Artim ◽  
Stephen D. Meriney

We have studied voltage-dependent inhibition of N-type calcium currents to investigate the effects of G-protein modulation-induced alterations in channel gating on action potential-evoked calcium current. In isolated chick ciliary ganglion neurons, GTPγS produced voltage-dependent inhibition that exhibited slowed activation kinetics and was partially relieved by a conditioning prepulse. Using step depolarizations to evoke calcium current, we measured tail current amplitudes on abrupt repolarization to estimate the time course of calcium channel activation from 1 to 30 ms. GTPγS prolonged significantly channel activation, consistent with the presence of kinetic slowing in the modulated whole cell current evoked by 100-ms steps. Since kinetic slowing is caused by an altered voltage dependence of channel activation (such that channels require stronger or longer duration depolarization to open), we asked if GTPγS-induced modulation would alter the time course of calcium channel activation during an action potential. Using an action potential waveform as a voltage command to evoke calcium current, we abruptly repolarized to −80 mV at various time points during the repolarization phase of the action potential. The resulting tail current was used to estimate the relative number of calcium channels that were open. Using action potential waveforms of either 2.2- or 6-ms duration at half-amplitude, there were no differences in the time course of calcium channel activation, or in the percent activation at any time point tested during the repolarization, when control and modulated currents were compared. It is also possible that modulated channels might open briefly and that these reluctant openings would effect the time course of action potential-evoked calcium current. However, when control and modulated currents were scaled to the same peak amplitude and superimposed, there was no difference in the kinetics of the two currents. Thus voltage-dependent inhibition did not alter the kinetics of action potential-evoked current. These results suggest that G-protein-modulated channels do not contribute significantly to calcium current evoked by a single action potential.


1996 ◽  
Vol 76 (5) ◽  
pp. 3559-3562 ◽  
Author(s):  
M. A. Wilk-Blaszczak ◽  
W. D. Singer ◽  
F. Belardetti

1. In NG108-15 cells dialyzed with 10 mM ethylene glycolbis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or bis (o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), bradykinin (BK) selectively inhibited the N-type calcium current. This effect of BK was blocked by an antibody directed against the G protein G13. Thus under these conditions G13 mediates the inhibition of voltage-dependent calcium current (ICa, V) by BK. In contrast, activation of K+ currents by BK is mediated by Gq/11. BK also couples to Gi2. 2. We now examine the involvement of G proteins in the inhibition of ICa, V by BK when NG108-15 cells are dialyzed with 1 mM BAPTA. Under these conditions, BK inhibited both the N- and L-type, but not the T-type, calcium currents. Intracellular application of anti-G13 antibody did not suppress the response to BK. Applications of either anti-Gq/11 antibody or pertussis toxin (PTX, to block Gi2) were similarly ineffective. Even combined application of anti-Gq/11 and -G13 antibodies, or PTX together with either antibody, did not block inhibition of ICa, V by BK. However, the combination of both antibodies with PTX blocked the response to BK in low BAPTA. In conclusion, both Gq/11 and a PTX-sensitive G protein (presumably Gi2), together with G13, are involved in the inhibition of ICa, V by BK. 3. Gq/11 inhibited only the L-type calcium current, whereas the PTX-sensitive G protein inhibited both the N- and L-type calcium currents. 4. The BAPTA dependence of the Gq/11 and PTX-sensitive inhibitions may reflect a Ca2+ requirement of the pathway(s) acting on the L current and/or a direct suppressive effect of BAPTA.


1991 ◽  
Vol 65 (4) ◽  
pp. 786-795 ◽  
Author(s):  
D. Busselberg ◽  
M. L. Evans ◽  
H. Rahmann ◽  
D. O. Carpenter

1. The effects of Pb2+ and Zn2+ on the peak of the voltage-activated calcium current of Aplysia neurons were examined. Calcium currents were reversibly blocked by Pb2+ at concentrations that did not significantly affect potassium and sodium currents and by Zn2+ at concentrations associated with a delay and reduction of peak sodium and potassium currents. 2. The block by both was concentration dependent, and percentage blockade was reduced in elevated Ca2+. The threshold Pb2+ concentration for blockade in 20 mM Ca artificial sea water (ASW) was approximately 1 microM, whereas for Zn2+ it was 2 mM. The Hill coefficient for Pb2+ action was near 1.0 under all conditions, whereas for Zn2+ it was 1.4-1.6. 3. With addition of Pb2+, the voltage at which peak calcium current was generated shifted to hyperpolarized voltages, an effect similar to that caused by reduction of Ca2+ concentration in the absence of Pb2+. Zn2+ shifted the voltage at which peak current was generated in a depolarizing direction. 4. Pb2+ did not significantly change inactivation but shifted the voltage dependence of activation to hyperpolarized voltages in a dose-dependent manner. Zn2+ shifted both activation and inactivation in a depolarizing direction in a dose-dependent fashion. 5. The blockade of calcium currents by Pb2+ but not Zn2+ was highly voltage dependent and increased with depolarization. 6. Our results suggest that Pb2+ is a specific, potent, competitive, and reversible blocker of calcium currents. These observations are consistent with a competition by Pb2+ with Ca2+ at a binding site within the calcium channel. In contrast, the blockade of calcium currents by Zn2+ is probably through actions at fixed charge sites external to the channel.


1989 ◽  
Vol 94 (1) ◽  
pp. 151-167 ◽  
Author(s):  
S W Jones ◽  
T N Marks

The calcium current of bullfrog sympathetic neurons activates and deactivates rapidly (tau less than 3 ms). For brief depolarizations, the current can be fit reasonably well by a Hodgkin-Huxley-type model with a single gating particle of charge +3. With 2 mM Ca2+ as the charge carrier, half-maximal activation occurs at approximately -5 mV, near the voltage where activation and deactivation are slowest. When extracellular divalent ion concentrations are reduced, monovalent ions (e.g., Na+ and methylammonium) produce kinetically similar inward currents. Current carried by Ba2+ is blocked by Cd2+ at micromolar concentrations, and by 100 nM omega-conotoxin. Commercially available saxitoxin blocks the current, but different batches have quantitatively different potency. The dihydropyridine agonist Bay K 8644 induces a slight shift in activation kinetics to more negative voltages, with little effect on the peak current. Nifedipine at least partially reverses the effect of Bay K 8644, but has little effect on its own. Muscarinic agonists and other ligands that inhibit the M-type potassium current of frog sympathetic neurons have weak inhibitory effects on the calcium current as well. One interpretation of these results is that the N-type calcium current predominates in these cells, with a minor contribution of L-type current.


1994 ◽  
Vol 266 (3) ◽  
pp. C709-C719 ◽  
Author(s):  
S. M. Simasko

The role of Na+ in the expression of membrane potential activity in the clonal rat pituitary cell line GH3 was investigated using the perforated patch variation of patch-clamp electrophysiological techniques. It was found that replacing bath Na+ with choline, tris(hydroxymethyl)aminomethane (Tris), or N-methyl-D-glucamine (NMG) caused the cells to hyperpolarize 20-30 mV. Tetrodotoxin had no effect. The effects of the Na+ substitutes could not be explained by effects on potassium or calcium currents. Although all three Na+ substitutes suppressed voltage-dependent calcium current by 10-20%, block of voltage-dependent calcium current by nifedipine or Co2+ did not result in hyperpolarization of the cells. There was no effect of the Na+ substitutes on voltage-dependent potassium currents. In contrast, all three Na+ substitutes influenced calcium-activated potassium currents [IK(Ca)], but only at depolarized potentials. Choline consistently suppressed IK(Ca), whereas Tris and NMG either had no effect or slightly increased IK(Ca). These effects on IK(Ca) also cannot explain the hyperpolarization induced by removing bath Na+. Choline always hyperpolarized cells yet suppressed IK(Ca). Furthermore, removing bath Na+ caused an increase in cell input resistance, an observation consistent with the loss of a membrane conductance as the basis of the hyperpolarization. Direct measurement of background currents revealed a 12-pA inward current at -84 mV that was lost upon removing bath Na+. These results suggest that this background sodium conductance provides the depolarizing drive for GH3 cells to reach the threshold for firing calcium-dependent action potentials.


2020 ◽  
Author(s):  
Abdesslam Chrachri

AbstractWhole-cell patch-clamp recordings from identified centrifugal neurons of the optic lobe in a slice preparation allowed the characterization of five voltage-dependent currents; two outward and three inward currents. The outward currents were; the 4-aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive sustained current or delayed rectifier (IK). The inward currents were; the tetrodotoxin-sensitive transient current or sodium current (INa). The second is the cobalt- and cadmium-sensitive sustained current which is enhanced by barium and blocked by the dihydropyridine antagonist, nifedipine suggesting that it could be the L-type calcium current (ICaL). Finally, another transient inward current, also carried by calcium, but unlike the L-type, this current is activated at more negative potentials and resembles the low-voltage-activated or T-type calcium current (ICaT) of other preparations.Application of the neuropeptide FMRFamide caused a significant attenuation to the peak amplitude of both sodium and sustained calcium currents without any apparent effect on the transient calcium current. Furthermore, FMRFamide also caused a reduction of both outward currents in these centrifugal neurons. The fact that FMRFamide reduced the magnitude of four of five characterized currents could suggest that this neuropeptide may act as a strong inhibitory agent on these neurons.SummaryFMRFamide modulate the ionic currents in identified centrifugal neurons in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual processing of these animals.


1993 ◽  
Vol 70 (4) ◽  
pp. 1639-1643 ◽  
Author(s):  
A. Golard ◽  
L. W. Role ◽  
S. A. Siegelbaum

1. Somatostatin produces a voltage-dependent inhibition of N-type Ca2+ current in chick sympathetic neurons. Pretreatment of chick sympathetic ganglion neurons with protein kinase C (PKC) activators has no effect on calcium current (ICa) but reduces the inhibition of ICa by somatostatin. 2. The effects of the alkaloid PKC activator (-)-indolactam V were indistinguishable from those of 4 beta-phorbol-12-myristate-13-acetate (4 beta-PMA). The inactive isomers (+)-indolactam V and 4 alpha-PMA did not alter the modulation of ICa by somatostatin. 3. Modulation of ICa by somatostatin desensitizes, with a time for half desensitization of approximately 3 min. PKC activation mimics the normal desensitization process in that responses to 30 nM somatostatin are inhibited to a greater extent than are responses to 1 microM somatostatin. 4. PKC appears to act at the level of the somatostatin receptor or receptor-G protein interaction because PKC activation does not alter Ca2+ current inhibition in response to a nonhydrolyzable analog of GTP, GTP-gamma-S, which directly activates G proteins. 5. The specific PKC inhibitor calphostin C largely reverses the effects of phorbol esters, but does not slow the normal rate of desensitization of somatostatin responses. This indicates that PKC is not involved in the homologous desensitization of the somatostatin receptor. 6. Neither substance P, which activates PKC in these cells, nor arachidonic acid, another PKC activator, altered the action of somatostatin on ICa.


2003 ◽  
Vol 99 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Igor M. Nikonorov ◽  
Thomas J. J. Blanck ◽  
Esperanza Recio-Pinto

Background G-protein activation mediates inhibition of N-type Ca2+ currents. Volatile anesthetics affect G-protein pathways at various levels, and activation of G-proteins has been shown to increase the volatile anesthetic potency for inhibiting the electrical-induced contraction in ileum. The authors investigated whether isoflurane inhibition of N-type Ba2+ currents was mediated by G-protein activation. Methods N-type Ba2+ currents were measured in the human neuronal SH-SY5Y cell line by using the whole cell voltage-clamp method. Results Isoflurane was found to have two effects on N-type Ba2+ currents. First, isoflurane reduced the magnitude of N-type Ba2+ currents to a similar extent (IC50 approximately 0.28 mm) in the absence and presence of GDPbetaS (a nonhydrolyzable GDP analog). Interestingly, GTPgammaS (a nonhydrolyzable GTP analog and G-protein activator) in a dose-dependent manner reduced the isoflurane block; 120 microm GTPgammaS completely eliminated the block of 0.3 mm isoflurane and reduced the apparent isoflurane potency by approximately 2.4 times (IC50 approximately 0.68 mm). Pretreatment with pertussis toxin or cholera toxin did not eliminate the GTPgammaS-induced protection against the isoflurane block. Furthermore, isoflurane reduced the magnitude of voltage-dependent G-protein-mediated inhibition of N-type Ba2+ currents, and this effect was eliminated by pretreatment with pertussis toxin or cholera toxin. Conclusions It was found that activation of G-proteins in a neuronal environment dramatically reduced the isoflurane potency for inhibiting N-type Ba2+ currents and, in turn, isoflurane affected the G-protein regulation of N-type Ba2+ currents.


1993 ◽  
Vol 102 (2) ◽  
pp. 277-294 ◽  
Author(s):  
C Pfeiffer-Linn ◽  
E M Lasater

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current described in a number of other preparations, along with a sustained high threshold, long-lasting calcium current that resembles the L-type calcium current. Here we report on the modulation of horizontal cell calcium channels by dopamine. Under whole-cell voltage clamp conditions favoring the expression of both calcium currents, dopamine had opposing actions on the two types of voltage-sensitive calcium currents in the same cone-type horizontal cell. The L-type calcium current was significantly potentiated by dopamine while the T-type current was simultaneously reduced. Dopamine had no effect on calcium currents in rod-type horizontal cells. Both of dopamine's actions were mimicked with the D1 receptor agonist, SKF 38393, and blocked by application of the D1 specific antagonist, SCH 23390. Dopamine's actions on the two types of calcium currents in white bass horizontal cells are mimicked by the cell membrane-permeant cyclic AMP derivative, 8-(4-chlorophenylthio)-cyclic AMP, suggesting that dopamine's action is linked to a cAMP-mediated second messenger system. Furthermore, the inhibitor of cAMP-dependent protein kinase blocked both of dopamine's actions on the voltage-dependent calcium channels when introduced through the patch pipette. This indicates that protein phosphorylation is involved in modulating horizontal cell calcium channels by dopamine. Taken together, these results show that dopamine has differential effects on the voltage-dependent calcium currents in retinal horizontal cells. The modulation of these currents may play a role in shaping the response properties of horizontal cells.


Sign in / Sign up

Export Citation Format

Share Document