Habitat deterioration affects antipredatory behavior, body condition, and parasite load of female Psammodromus algirus lizards

2007 ◽  
Vol 85 (6) ◽  
pp. 743-751 ◽  
Author(s):  
Luisa Amo ◽  
Pilar López ◽  
José Martín

Deforestation may increase predation risk for prey because it may make prey more conspicuous and limit the number of refuges suitable to avoid predators. Therefore, prey may need to increase the magnitude of escape responses. However, excessive antipredatory effort might lead to a loss of body mass and a decrease in defense against parasites, with important consequences for short- and long-term fitness. We analyzed whether Psammodromus algirus (L., 1758) lizards that inhabit patches with different levels of deterioration of the vegetation within the same oak forest differed in relative abundance numbers, microhabitat use, antipredatory strategies, and health state. Results showed lizards selected similar microhabitats regardless of the level of deterioration of the vegetation and relative abundance of lizards was similar in both areas. However, habitat deterioration seemed to increase predation risk, at least for females, because they were detected at longer distances in deteriorated areas. Females seemed to adjust their antipredatory behavior accordingly to high risk of predation by increasing approach distances allowed to predators. The costs associated with frequent antipredatory displays might explain why females in deteriorated habitats had lower body condition and greater blood parasite loads than females in natural areas. This loss of body condition and increased parasitemia might have deleterious consequences for female fitness and therefore affect the maintenance of lizard populations in the long-term.

2000 ◽  
Vol 78 (9) ◽  
pp. 1653-1660 ◽  
Author(s):  
Laura E Vega ◽  
Patricio J Bellagamba ◽  
Lee A Fitzgerald

We studied abundance and habitat use in two species of Liolaemus (Squamata: Tropiduridae) at a coastal dune site in eastern Argentina before and 7 years after a road was built at the site. Before disturbance, lizards exhibited similar abundances and a wide segregation in microhabitat use. Liolaemus multimaculatus used flat dunes scarcely covered by Spartina ciliata, while Liolaemus gracilis used the grass Panicum racemosum as cover. After disturbance, the mean number of L. multimaculatus detected by month was significantly less than that observed in the predisturbance period, owing to a drastic reduction in S. ciliata microhabitat patches. The mean number of L. gracilis was similar to that seen during the first period. These differences were clearly linked to habitat loss at the site. We concluded that human impact on the habitat structure of foredunes induced changes in the structure of the lizard assemblage, including shifts in the relative abundance of species and the proportional use of their preferred microhabitats.


2019 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Andrea G. Locatelli ◽  
Simone Ciuti ◽  
Primož Presetnik ◽  
Roberto Toffoli ◽  
Emma Teeling

Author(s):  
Kristina Noreikienė ◽  
Kim Jaatinen ◽  
Benjamin B. Steele ◽  
Markus Öst

AbstractGlucocorticoid hormones may mediate trade-offs between current and future reproduction. However, understanding their role is complicated by predation risk, which simultaneously affects the value of the current reproductive investment and elevates glucocorticoid levels. Here, we shed light on these issues in long-lived female Eiders (Somateria mollissima) by investigating how current reproductive investment (clutch size) and hatching success relate to faecal glucocorticoid metabolite [fGCM] level and residual reproductive value (minimum years of breeding experience, body condition, relative telomere length) under spatially variable predation risk. Our results showed a positive relationship between colony-specific predation risk and mean colony-specific fGCM levels. Clutch size and female fGCM were negatively correlated only under high nest predation and in females in good body condition, previously shown to have a longer life expectancy. We also found that younger females with longer telomeres had smaller clutches. The drop in hatching success with increasing fGCM levels was least pronounced under high nest predation risk, suggesting that elevated fGCM levels may allow females to ensure some reproductive success under such conditions. Hatching success was positively associated with female body condition, with relative telomere length, particularly in younger females, and with female minimum age, particularly under low predation risk, showing the utility of these metrics as indicators of individual quality. In line with a trade-off between current and future reproduction, our results show that high potential for future breeding prospects and increased predation risk shift the balance toward investment in future reproduction, with glucocorticoids playing a role in the resolution of this trade-off.


2012 ◽  
Vol 33 (3-4) ◽  
pp. 365-372 ◽  
Author(s):  
Thomas Fauvel ◽  
François Brischoux ◽  
Marine Jeanne Briand ◽  
Xavier Bonnet

Long term population monitoring is essential to ecological studies; however, field procedures may disturb individuals. Assessing this topic is important in worldwide declining taxa such as reptiles. Previous studies focussed on animal welfare issues and examined short-term effects (e.g. increase of stress hormones due to handling). Long-term effects with possible consequences at the population level remain poorly investigated. In the present study, we evaluated the effects of widely used field procedures (e.g. handling, marking, forced regurgitation) both on short-term (hormonal stress response) and on long-term (changes in body condition, survival) scales in two intensively monitored populations of sea kraits (Laticauda spp.) in New Caledonia. Focusing on the most intensively monitored sites, from 2002 to 2012, we gathered approximately 11 200 captures/recaptures on 4500 individuals. Each snake was individually marked (scale clipping + branding) and subjected to various measurements (e.g. body size, head morphology, palpation). In addition, a subsample of more than 500 snakes was forced to regurgitate their prey for dietary analyses. Handling caused a significant stress hormonal response, however we found no detrimental long-term effect on body condition. Forced regurgitation did not cause any significant effect on both body condition one year later and survival. These results suggest that the strong short-term stress provoked by field procedures did not translate into negative effects on the population. Although similar analyses are required to test the validity of our conclusions in other species, our results suggest distinguishing welfare and population issues to evaluate the potential impact of population surveys.


Crustaceana ◽  
2015 ◽  
Vol 88 (7-8) ◽  
pp. 839-856 ◽  
Author(s):  
J. Hesse ◽  
J. A. Stanley ◽  
A. G. Jeffs

Kelp habitats are in decline in many temperate coastal regions of the world due to climate change and expansion of populations of grazing urchins. The loss of kelp habitat may influence the vulnerability to predators of the juveniles of commercially important species. In this study relative predation rates for kelp versus barren reef habitat were measured for early juvenile Australasian spiny lobster, Jasus edwardsii (Hutton, 1875), on the northeastern coast of New Zealand using tethering methods. Variation in assemblages of predators over small spatial scales appeared to be more important for determining the relative predation of lobsters, regardless of habitat type. Therefore, the assessment of relative predation risk to early juvenile lobsters between kelp and barren habitats will require more extensive sampling at a small spatial scale, as well as a specific focus on sampling during crepuscular and nocturnal periods when these lobsters are most at risk of predation.


2010 ◽  
Vol 37 (4) ◽  
pp. 273 ◽  
Author(s):  
Karen Fey ◽  
Peter B. Banks ◽  
Hannu Ylönen ◽  
Erkki Korpimäki

Context. Potential mammalian prey commonly use the odours of their co-evolved predators to manage their risks of predation. But when the risk comes from an unknown source of predation, odours might not be perceived as dangerous, and anti-predator responses may fail, except possibly if the alien predator is of the same archetype as a native predator. Aims. In the present study we examined anti-predator behavioural responses of voles from the outer archipelagos of the Baltic Sea, south-western Finland, where they have had no resident mammalian predators in recent history. Methods. We investigated responses of field voles (Microtus agrestis) to odours of native least weasels (Mustela nivalis) and a recently invading alien predator, the American mink (Mustela vison), in laboratory. We also studied the short-term responses of free-ranging field voles and bank voles (Myodes glareolus) to simulated predation risk by alien mink on small islands in the outer archipelago of the Baltic Sea. Key results. In the laboratory, voles avoided odour cues of native weasel but not of alien mink. It is possible that the response to mink is a context dependent learned response which could not be induced in the laboratory, whereas the response to weasel is innate. In the field, however, voles reduced activity during their normal peak-activity times at night as a response to simulated alien-mink predation risk. No other shifts in space use or activity in safer microhabitats or denser vegetation were apparent. Conclusions. Voles appeared to recognise alien minks as predators from their odours in the wild. However, reduction in activity is likely to be only a short-term immediate response to mink presence, which is augmented by longer-term strategies of habitat shift. Because alien mink still strongly suppresses vole dynamics despite these anti-predator responses, we suggest that behavioural naiveté may be the primary factor in the impact of an alien predator on native prey. Implications. Prey naiveté has long been considered as the root cause of the devastating impacts of alien predators, whereby native prey simply fail to recognise and respond to the novel predation risk. Our results reveal a more complex form of naiveté whereby native prey appeared to recognise alien predators as a threat but their response is ultimately inadequate. Thus, recognition alone is unlikely to afford protection for native prey from alien-predator impacts. Thus, management strategies that, for example, train prey in recognition of novel threats must induce effective responses if they are expected to succeed.


Oikos ◽  
2016 ◽  
Vol 126 (6) ◽  
pp. 863-873 ◽  
Author(s):  
Chiara Morosinotto ◽  
Alexandre Villers ◽  
Rauno Varjonen ◽  
Erkki Korpimäki

1996 ◽  
Vol 127 (4) ◽  
pp. 549-553 ◽  
Author(s):  
O. Mora ◽  
A. Shimada ◽  
F. J. Ruiz

SUMMARYTwo experiments were done in Mexico (1992–93) to determine the response of goats to different periods of feed restriction on liveweight, organ weights and tissue composition. In each, the weight, body condition and daily dry matter intake (DM1) of two groups of 12 female, adult, non-lactating, non-pregnant, Nubian crossbred goats were recorded for 7 weeks (stabilization period; SP), to allow the animals to reach and maintain their liveweight and body condition. At the end of the SP the animals in Expt 1 (RP1) were feed restricted for 18 weeks and for 36 weeks in Expt 2 (RP2). Animals were divided into three groups receiving either 100 (FL1), 80 (FL2) or 60% (FL3) of the levels of DM1 previously observed. At the end of each experimental period all animals were slaughtered, carcass weights were recorded and viscerae were weighed.A sample of the soft tissues was chemically analysed. There were no significant changes in body condition in either experiment (P > 0·05). None of the feeding levels had an effect on carcass weight or the chemical composition of soft tissues (P > 0·05). Liver weights (as a proportion of slaughter weight) were significantly different among goats fed at different feeding levels in both experiments. The results of this study show the adaptation capacity of adult goats to medium and long term malnutrition, and the importance of the liver as a source for the generation of energy and for sustaining protein turnover. This could be especially important for goats grazing in arid and semiarid zones where dry periods can last for months and feed availability is therefore sometimes limited.


Sign in / Sign up

Export Citation Format

Share Document